Chowdhury Chandra, Karthikraja Esackraj, Subramanian Venkatesan
Advanced Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Sardar Patel Road, Adyar, Chennai 600 020, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
Phys Chem Chem Phys. 2024 Oct 2;26(38):25143-25155. doi: 10.1039/d4cp03171g.
The realm of atomic catalysts has witnessed notable advancements; yet, the predominant focus remains on single atomic catalysts (SACs). The exploration and successful implementation of dual atomic catalysts (DACs) pose intricate challenges, primarily concerning thermodynamic stability and optimal metallic composition. To address these issues, we present a comprehensive theoretical investigation of α-2 graphyne (GPY)-based DACs, synthesized in-house with a keen focus on formation stability. Density functional theory (DFT) simulations were leveraged to ascertain each DAC structure's stability, considering numerous transition metal permutations totalling about 823 DACs. Furthermore, we developed a machine learning (ML) model that predicts stability based solely on the physical characteristics of the constituent elements in the DACs, thus eliminating the need for extensive DFT calculations. Our findings not only offer detailed insights into atomic interactions but also highlight promising candidates for DACs, pushing beyond traditional trial-and-error synthesis approaches. This study fosters a deeper understanding of DACs and paves new pathways for exploring atomic catalysts for practical applications.
原子催化剂领域已取得显著进展;然而,主要关注点仍集中在单原子催化剂(SACs)上。双原子催化剂(DACs)的探索与成功应用面临着复杂的挑战,主要涉及热力学稳定性和最佳金属组成。为解决这些问题,我们对基于α-2石墨炔(GPY)的DACs进行了全面的理论研究,这些DACs是在内部合成的,重点关注形成稳定性。利用密度泛函理论(DFT)模拟来确定每个DAC结构的稳定性,考虑了总共约823种DACs的众多过渡金属排列。此外,我们开发了一种机器学习(ML)模型,该模型仅基于DACs中组成元素的物理特性来预测稳定性,从而无需进行大量的DFT计算。我们的研究结果不仅提供了对原子相互作用的详细见解,还突出了有前景的DACs候选物,超越了传统的试错合成方法。这项研究促进了对DACs的更深入理解,并为探索用于实际应用的原子催化剂开辟了新途径。