Suppr超能文献

利用增强的 ISDra2 TnpB 系统和深度学习预测的 ωRNAs 进行有效的基因组编辑。

Effective genome editing with an enhanced ISDra2 TnpB system and deep learning-predicted ωRNAs.

机构信息

Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland.

Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland.

出版信息

Nat Methods. 2024 Nov;21(11):2084-2093. doi: 10.1038/s41592-024-02418-z. Epub 2024 Sep 23.

Abstract

Transposon (IS200/IS605)-encoded TnpB proteins are predecessors of class 2 type V CRISPR effectors and have emerged as one of the most compact genome editors identified thus far. Here, we optimized the design of Deinococcus radiodurans (ISDra2) TnpB for application in mammalian cells (TnpBmax), leading to an average 4.4-fold improvement in editing. In addition, we developed variants mutated at position K76 that recognize alternative target-adjacent motifs (TAMs), expanding the targeting range of ISDra2 TnpB. We further generated an extensive dataset on TnpBmax editing efficiencies at 10,211 target sites. This enabled us to delineate rules for on-target and off-target editing and to devise a deep learning model, termed TnpB editing efficiency predictor (TEEP; https://www.tnpb.app ), capable of predicting ISDra2 TnpB guiding RNA (ωRNA) activity with high performance (r > 0.8). Employing TEEP, we achieved editing efficiencies up to 75.3% in the murine liver and 65.9% in the murine brain after adeno-associated virus (AAV) vector delivery of TnpBmax. Overall, the set of tools presented in this study facilitates the application of TnpB as an ultracompact programmable endonuclease in research and therapeutics.

摘要

转座子 (IS200/IS605) 编码的 TnpB 蛋白是类 2 型 V CRISPR 效应蛋白的前身,是迄今为止发现的最紧凑的基因组编辑蛋白之一。在这里,我们对耐辐射球菌 (ISDra2) TnpB 进行了设计优化,使其可应用于哺乳动物细胞 (TnpBmax),从而使编辑效率平均提高了 4.4 倍。此外,我们开发了在位置 K76 发生突变的变体,这些变体可识别替代的靶标相邻基序 (TAMs),从而扩大了 ISDra2 TnpB 的靶向范围。我们进一步在 10211 个靶位点上生成了大量关于 TnpBmax 编辑效率的数据。这使我们能够描绘出靶标和非靶标编辑的规则,并设计出一种深度学习模型,称为 TnpB 编辑效率预测器 (TEEP; https://www.tnpb.app ),该模型能够以高绩效 (r>0.8) 预测 ISDra2 TnpB 指导 RNA (ωRNA) 的活性。使用 TEEP,我们在腺相关病毒 (AAV) 载体递送 TnpBmax 后,在小鼠肝脏中实现了高达 75.3%的编辑效率,在小鼠大脑中实现了高达 65.9%的编辑效率。总的来说,本研究中提供的这套工具促进了 TnpB 作为一种超紧凑可编程内切酶在研究和治疗中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验