Suppr超能文献

基于超声谐波成像的新型肝脏脂肪变性定量评估方法

Novel Quantitative Liver Steatosis Assessment Method With Ultrasound Harmonic Imaging.

作者信息

Gong Ping, Zhang Jingke, Huang Chengwu, Lok U-Wai, Tang Shanshan, Liu Hui, DeRuiter Ryan, Petersen Kendra, Knoll Kate, Robinson Kathryn, Watt Kymberly, Callstrom Matthew, Chen Shigao

机构信息

Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.

Department of Ultrasound, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.

出版信息

J Ultrasound Med. 2025 Jan;44(1):77-85. doi: 10.1002/jum.16582. Epub 2024 Sep 24.

Abstract

OBJECTIVES

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent liver disorder in Western countries, with approximately 20%-30% of the MASLD patients progressing to severe stages. There is an urgent need for noninvasive, cost-effective, widely accessible, and precise biomarkers to evaluate liver steatosis. This study aims to assess and compare the diagnostic performance of a novel reference frequency method-based ultrasound attenuation coefficient estimation (ACE) in both fundamental (RFM-ACE-FI) and harmonic (RFM-ACE-HI) imaging for detecting and grading liver steatosis.

METHODS

An Institutional Review Board-approved prospective study was carried out between December 2018 and October 2022. A total number of 130 subjects were enrolled in the study. The correlation between RFM-ACE-HI values and magnetic resonance imaging proton density fat fraction (MRI-PDFF), as well as between RFM-ACE-FI values and MRI-PDFF were calculated. The diagnostic performance of RFM-ACE-FI and RFM-ACE-HI was evaluated using receiver operating characteristic (ROC) curve analysis, as compared to MRI-PDFF. The reproducibility of RFM-ACE-HI was assessed by interobserver agreement between two sonographers.

RESULTS

A strong correlation was observed between RFM-ACE-HI and MRI-PDFF, with R = 0.88 (95% confidence interval [CI]: 0.83-0.92; P < .001), while the correlation between RFM-ACE-FI and MRI-PDFF was R = 0.65 (95% CI: 0.50-0.76; P < .001). The area under the ROC (AUROC) curve for RFM-ACE-HI in staging liver steatosis grades of S ≥ 1 and S ≥ 2 was 0.97 (95% CI: 0.91-0.99; P < .001) and 0.98 (95% CI: 0.93-1.00; P < .001), respectively, and 0.76 (95% CI: 0.65-0.85) and 0.80 (95% CI: 0.70-0.88) for RFM-ACE-FI, respectively. Great reproducibility was achieved for RFM-ACE-HI, with an interobserver agreement of R = 0.97 (95% CI: 0.94-0.99; P < .001).

CONCLUSIONS

The novel RFM-ACE-HI method offered high liver steatosis diagnostic accuracy and reproducibility, which has important clinical implications for early disease intervention and treatment evaluation.

摘要

目的

代谢功能障碍相关脂肪性肝病(MASLD)是西方国家最常见的肝脏疾病,约20%-30%的MASLD患者会进展到严重阶段。迫切需要无创、经济高效、广泛可用且精确的生物标志物来评估肝脂肪变性。本研究旨在评估和比较一种基于新型参考频率方法的超声衰减系数估计(ACE)在基波(RFM-ACE-FI)和谐波(RFM-ACE-HI)成像中检测和分级肝脂肪变性的诊断性能。

方法

2018年12月至2022年10月期间开展了一项经机构审查委员会批准的前瞻性研究。共有130名受试者纳入该研究。计算RFM-ACE-HI值与磁共振成像质子密度脂肪分数(MRI-PDFF)之间以及RFM-ACE-FI值与MRI-PDFF之间的相关性。与MRI-PDFF相比,使用受试者工作特征(ROC)曲线分析评估RFM-ACE-FI和RFM-ACE-HI的诊断性能。通过两名超声检查人员之间的观察者间一致性评估RFM-ACE-HI的可重复性。

结果

观察到RFM-ACE-HI与MRI-PDFF之间存在强相关性,R = 0.88(95%置信区间[CI]:0.83-0.92;P <.001),而RFM-ACE-FI与MRI-PDFF之间的相关性为R = 0.65(95%CI:0.50-0.76;P <.001)。RFM-ACE-HI在分期肝脂肪变性等级S≥1和S≥2时的ROC曲线下面积(AUROC)分别为0.97(95%CI:0.91-0.99;P <.001)和0.98(95%CI:0.93-1.00;P <.001),RFM-ACE-FI的分别为0.76(95%CI:0.65-0.85)和0.80(95%CI:0.70-0.88)。RFM-ACE-HI具有很高的可重复性,观察者间一致性为R = 0.97(95%CI:0.94-0.99;P <.001)。

结论

新型RFM-ACE-HI方法具有较高的肝脂肪变性诊断准确性和可重复性,这对疾病的早期干预和治疗评估具有重要的临床意义。

相似文献

本文引用的文献

4
Quantification of Liver Fat Content with Ultrasound: A WFUMB Position Paper.超声定量肝脏脂肪含量:WFUMB 立场文件。
Ultrasound Med Biol. 2021 Oct;47(10):2803-2820. doi: 10.1016/j.ultrasmedbio.2021.06.002. Epub 2021 Jul 18.
6
Ultrasound Attenuation Estimation in Harmonic Imaging for Robust Fatty Liver Detection.谐波成象中超声衰减估计用于稳健的脂肪肝检测。
Ultrasound Med Biol. 2020 Nov;46(11):3080-3087. doi: 10.1016/j.ultrasmedbio.2020.07.006. Epub 2020 Aug 6.
10
Quantitative Ultrasound in Ex Vivo Fibrotic Rabbit Livers.定量超声在离体纤维化兔肝中的应用。
Ultrasound Med Biol. 2019 Jul;45(7):1777-1786. doi: 10.1016/j.ultrasmedbio.2019.02.013. Epub 2019 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验