Sadeghi Ebrahim, Morgen Per, Makovec Darko, Gyergyek Saso, Sharma Raghunandan, Andersen Shuang Ma
Department of Green Technology, University of Southern Denmark, Odense M 5230, Denmark.
Department for Materials Synthesis, Jozef Stefan Institute, Ljubljana 1000, Slovenia.
ACS Appl Mater Interfaces. 2024 Oct 9;16(40):53750-53763. doi: 10.1021/acsami.4c10522. Epub 2024 Sep 24.
Enhancing iridium (Ir)-based electrocatalysts to achieve high activity and robust durability for the oxygen evolution reaction (OER) in acidic environments has been an ongoing mission in the commercialization of proton exchange membrane (PEM) electrolyzers. In this study, we present the synthesis of carbon-supported Ir nanoparticles (NPs) using a modified impregnation method followed by solid-state reduction, with Ir loadings of 20 and 40 wt % on carbon. Among the catalysts, the sample with an Ir loading of 20 wt % synthesized at 1000 °C with a heating rate of 300 °C/h demonstrated the highest mass-normalized OER performance of 1209 A g and an OER current retention of 80% after 1000 cycles of cyclic voltammetry (CV). High-resolution STEM images confirmed the uniform dispersion of NPs, with diameters of 1.6 ± 0.4 nm across the support. XPS analysis revealed that the C-O and C═O peaks shifted slightly toward higher binding energies for the best-performing catalyst. In comparison, the metallic Ir state shifted toward lower binding energies compared to other samples. This suggests electron transfer from the carbon support to the Ir NPs, indicating a potential interaction between the catalyst and the support. This work underscores the strong potential of the solid-state method for the scalable synthesis of supported Ir catalysts.
增强基于铱(Ir)的电催化剂,以在酸性环境中实现用于析氧反应(OER)的高活性和强大耐久性,一直是质子交换膜(PEM)电解槽商业化进程中的一项长期任务。在本研究中,我们展示了一种使用改进的浸渍法,随后进行固态还原的方法来合成碳负载的铱纳米颗粒(NPs),碳上铱的负载量为20 wt%和40 wt%。在这些催化剂中,在1000°C下以300°C/h的升温速率合成的铱负载量为20 wt%的样品,表现出最高的质量归一化OER性能,即1209 A g,并且在循环伏安法(CV)进行1000次循环后,OER电流保持率为80%。高分辨率STEM图像证实了NPs的均匀分散,整个载体上的直径为1.6±0.4 nm。XPS分析表明,对于性能最佳的催化剂,C-O和C═O峰向更高结合能方向略有移动。相比之下,与其他样品相比,金属铱态向更低结合能方向移动。这表明电子从碳载体转移到Ir NPs,表明催化剂与载体之间存在潜在的相互作用。这项工作强调了固态法在可扩展合成负载型Ir催化剂方面的强大潜力。