He Jing, Fu Gang, Zhang Jiaxu, Xu Ping, Sun Jianmin
State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150080, China.
Small. 2022 Oct;18(41):e2203365. doi: 10.1002/smll.202203365. Epub 2022 Sep 11.
Developing efficient and robust anodic electrocatalysts to implement the proton-exchange membrane (PEM) electrolyzer is critical for hydrogen generation. Nevertheless, the only known applicable anode catalyst IrO in PEM electrolyzers still requires high overpotential due to the weak binding energy between oxygen intermediates and active sites, limiting its wide applications. Herein, a ternary Ir W Sn O nanocatalyst synthesized through a sol-gel strategy, exhibits a low overpotential of 236 mV (10 mA cm ) for thoxygen evolution reaction (OER), accompanied with robust durability over 220 h at 1 A cm in 0.5 m H SO . Moreover, the optimized Ir W Sn O delivers a prominent mass activity of 722.7 A g at 1.53 V (vs RHE), which is around 34 times higher compared with that of IrO . The mircrostructural analyses reveal that codoping of W and Sn stabilizes Ir with a valence state lower than 4+ through multistage charge redistribution, avoiding the overoxidation of Ir above 1.6 V versus RHE and enhancing the acidic OER performance. Additionally, density functional theory calculations reveal that codoping of W and Sn moves the d band center of Ir to the Fermi level, thus enhancing the binding energies of oxygen intermediates with Ir sites and decreasing the energy barrier toward acidic OER.
开发高效且稳定的阳极电催化剂以实现质子交换膜(PEM)电解槽对于制氢至关重要。然而,PEM电解槽中唯一已知适用的阳极催化剂IrO由于氧中间体与活性位点之间的结合能较弱,仍需要较高的过电位,这限制了其广泛应用。在此,通过溶胶 - 凝胶策略合成的三元IrWSnO纳米催化剂在析氧反应(OER)中表现出236 mV(10 mA cm )的低过电位,并且在0.5 m H₂SO₄中1 A cm 下具有超过220小时的稳定耐久性。此外,优化后的IrWSnO在1.53 V(相对于可逆氢电极,vs RHE)下具有722.7 A g 的显著质量活性,这比IrO₂的质量活性高约34倍。微观结构分析表明,W和Sn的共掺杂通过多级电荷重新分布稳定了价态低于4 + 的Ir,避免了相对于RHE在1.6 V以上时Ir的过度氧化,并提高了酸性OER性能。此外,密度泛函理论计算表明,W和Sn的共掺杂将Ir的d带中心移至费米能级,从而增强了氧中间体与Ir位点的结合能,并降低了酸性OER的能垒。