Bergner Caroline Gertrud, van der Meer Franziska, Franz Jonas, Vakrakou Aigli, Würfel Thea, Nessler Stefan, Schäfer Lisa, Nau-Gietz Cora, Winkler Anne, Lagumersindez-Denis Nielsen, Wrzos Claudia, Damkou Ioanna Alkmini, Sergiou Christina, Schultz Verena, Knauer Carolin, Metz Imke, Bahn Erik, Garea Rodriguez Enrique, Merkler Doron, Simons Mikael, Stadelmann Christine
Department of Neuropathology, University Medical Center Göttingen, Göttingen 37075, Germany.
Department of Neurology, University Hospital Leipzig, Leipzig 04103, Germany.
Brain. 2025 Mar 6;148(3):908-920. doi: 10.1093/brain/awae293.
Remyelination is a crucial regenerative process in demyelinating diseases, limiting persisting damage to the CNS. It restores saltatory nerve conduction and ensures trophic support of axons. In patients with multiple sclerosis, remyelination has been observed in both white and grey matter and found to be more efficient in the cortex. Brain-enriched myelin-associated protein 1 (BCAS1) identifies oligodendrocyte lineage cells in the stage of active myelin formation in development and regeneration. Other than in the white matter, BCAS1+ oligodendrocytes are maintained at high densities in the cortex throughout life. Here, we investigated cortical lesions in human biopsy and autopsy tissue from patients with multiple sclerosis in direct comparison to demyelinating mouse models and demonstrate that following a demyelinating insult BCAS1+ oligodendrocytes in remyelinating cortical lesions shift from a quiescent to an activated, internode-forming morphology co-expressing myelin-associated glycoprotein (MAG), necessary for axonal contact formation. Of note, activated BCAS1+ oligodendrocytes are found at early time points of experimental demyelination amidst ongoing inflammation. In human tissue, activated BCAS1+ oligodendrocytes correlate with the density of myeloid cells, further supporting their involvement in an immediate regenerative response. Furthermore, studying the microscopically normal appearing non demyelinated cortex in patients with chronic multiple sclerosis, we find a shift from quiescent BCAS1+ oligodendrocytes to mature, myelin-maintaining oligodendrocytes, suggesting oligodendrocyte differentiation and limited replenishment of BCAS1+ oligodendrocytes in long-standing disease. We also demonstrate that part of perineuronal satellite oligodendrocytes are BCAS1+ and contribute to remyelination in human and experimental cortical demyelination. In summary, our results provide evidence from human tissue and experimental models that BCAS1+ cells in the adult cortex represent a population of pre-differentiated oligodendrocytes that rapidly react after a demyelinating insult thus enabling immediate myelin regeneration. In addition, our data suggest that limited replenishment of BCAS1+ oligodendrocytes may contribute to the remyelination failure observed in the cortex in chronic multiple sclerosis.
髓鞘再生是脱髓鞘疾病中一个关键的再生过程,可限制对中枢神经系统的持续损伤。它能恢复跳跃式神经传导并确保轴突的营养支持。在多发性硬化症患者中,已在白质和灰质中观察到髓鞘再生,且发现其在皮质中更有效。脑富集髓鞘相关蛋白1(BCAS1)可识别发育和再生过程中活跃髓鞘形成阶段的少突胶质细胞系细胞。除了在白质中,BCAS1 +少突胶质细胞在整个生命过程中都在皮质中保持高密度。在此,我们直接比较了多发性硬化症患者的人类活检和尸检组织中的皮质病变与脱髓鞘小鼠模型,并证明在脱髓鞘损伤后,髓鞘再生的皮质病变中的BCAS1 +少突胶质细胞从静止形态转变为激活的、形成节间的形态,同时共表达髓鞘相关糖蛋白(MAG),这是轴突接触形成所必需的。值得注意的是,在实验性脱髓鞘的早期时间点,在持续炎症中发现了激活的BCAS1 +少突胶质细胞。在人体组织中,激活的BCAS1 +少突胶质细胞与髓样细胞的密度相关,进一步支持它们参与即时再生反应。此外,研究慢性多发性硬化症患者显微镜下外观正常的非脱髓鞘皮质,我们发现从静止的BCAS1 +少突胶质细胞转变为成熟的、维持髓鞘的少突胶质细胞,这表明在长期疾病中少突胶质细胞分化以及BCAS1 +少突胶质细胞的补充有限。我们还证明,部分神经元周围卫星少突胶质细胞是BCAS1 +,并在人类和实验性皮质脱髓鞘中促进髓鞘再生。总之,我们的结果从人体组织和实验模型中提供了证据,即成年皮质中的BCAS1 +细胞代表一群预分化的少突胶质细胞,它们在脱髓鞘损伤后迅速反应,从而实现即时髓鞘再生。此外,我们的数据表明,BCAS1 +少突胶质细胞的有限补充可能导致慢性多发性硬化症皮质中观察到的髓鞘再生失败。