Frosch Maximilian, Shimizu Takashi, Wogram Emile, Amann Lukas, Gruber Lars, Groisman Ayelén I, Fliegauf Maximilian, Schwabenland Marius, Chhatbar Chintan, Zechel Sabrina, Rosewich Hendrik, Gärtner Jutta, Quintana Francisco J, Buescher Joerg M, Blank Thomas, Binder Harald, Stadelmann Christine, Letzkus Johannes J, Hopf Carsten, Masuda Takahiro, Knobeloch Klaus-Peter, Prinz Marco
Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany.
Nature. 2025 Aug 6. doi: 10.1038/s41586-025-09477-y.
As tissue-resident macrophages of the central nervous system parenchyma, microglia perform diverse essential functions during homeostasis and perturbations. They primarily interact with neurons by means of synaptic engulfment and through the rapid elimination of apoptotic cells and non-functional synapses. Here, by combining unbiased lipidomics and high-resolution spatial lipid imaging, deep single-cell transcriptome analysis and novel cell-type-specific mutants, we identified a previously unknown mode of microglial interaction with neurons. During homeostasis, microglia deliver the lysosomal enzyme β-hexosaminidase to neurons for the degradation of the ganglioside GM2 that is integral to maintaining cell membrane organization and function. Absence of Hexb, encoding the β subunit of β-hexosaminidase, in both mice and patients with neurodegenerative Sandhoff disease leads to a massive accumulation of GM2 derivatives in a characteristic spatiotemporal manner. In mice, neuronal GM2 gangliosides subsequently engage the macrophage galactose-type lectin 2 receptor on microglia through N-acetylgalactosamine residues, leading to lethal neurodegeneration. Notably, replacement of microglia with peripherally derived microglia-like cells is able to break this degenerative cycle and fully restore central nervous system homeostasis. Our results reveal a mode of bidirectional microglia-neuron communication centred around GM2 ganglioside turnover, identify a microgliopathy and offer therapeutic avenues for these maladies.
作为中枢神经系统实质的组织驻留巨噬细胞,小胶质细胞在稳态和扰动过程中发挥着多种重要功能。它们主要通过突触吞噬以及快速清除凋亡细胞和无功能突触与神经元相互作用。在此,我们通过结合无偏向脂质组学和高分辨率空间脂质成像、深度单细胞转录组分析以及新型细胞类型特异性突变体,发现了一种此前未知的小胶质细胞与神经元相互作用模式。在稳态期间,小胶质细胞将溶酶体酶β - 己糖胺酶输送到神经元,用于降解神经节苷脂GM2,而GM2对于维持细胞膜的组织和功能至关重要。在患有神经退行性桑德霍夫病的小鼠和患者中,编码β - 己糖胺酶β亚基的Hexb缺失会导致GM2衍生物以特征性的时空方式大量积累。在小鼠中,神经元GM2神经节苷脂随后通过N - 乙酰半乳糖胺残基与小胶质细胞上的巨噬细胞半乳糖型凝集素2受体结合,导致致命的神经退行性变。值得注意的是,用外周来源的小胶质细胞样细胞替代小胶质细胞能够打破这种退行性循环并完全恢复中枢神经系统稳态。我们的研究结果揭示了一种以GM2神经节苷脂周转为中心的双向小胶质细胞 - 神经元通讯模式,确定了一种小胶质细胞病变,并为这些疾病提供了治疗途径。