Suppr超能文献

采用多尺度方法阐明多孔聚合物网络影响微孔玻璃态聚合物膜的结构、老化倾向和选择性的分子机制。

Elucidating the Molecular Mechanisms by which Porous Polymer Networks Affect Structure, Aging Propensity, and Selectivity of Microporous Glassy Polymer Membranes using a Multiscale Approach.

作者信息

Condes Lucas C, Webb Matthew T, Le Tran T B, Box William J, Doherty Cara M, Gali Aditi, Garrido Leoncio, Deng Jing, Matesanz-Niño Laura, Lozano Angel E, Alvarez Cristina, Buongiorno Nardelli Marco, Striolo Alberto, Hill Anita J, Galizia Michele

机构信息

School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, 100 E. Boyd Street, Norman 73019 Oklahoma, United States.

CSIRO Manufacturing, Research Way, 3168 Clayton, Australia.

出版信息

ACS Appl Mater Interfaces. 2024 Oct 9;16(40):53843-53854. doi: 10.1021/acsami.4c11472. Epub 2024 Sep 25.

Abstract

Microporous glassy polymer membranes suffer from physical aging, which adversely affects their performance in the short time frame. We show that the aging propensity of a model microporous polymer, poly(1-trimethylsilyl-1-propyne) (PTMSP), can be effectively mitigated by blending with as little as 5 wt % porous polymer network (PPN) composed of triptycene and isatin. The aging behavior of these materials was monitored via N pure gas permeability measurements over the course of 3 weeks, showing a 14% decline in PTMSP blended with 5 wt % PPN vs a 41% decline in neat PTMSP. Noteworthy, PPNs are 2 orders of magnitude cheaper than the porous aromatic frameworks previously used to control PTMSP aging. A variety of experimental and computational techniques, such as Positron Annihilation Lifetime Spectroscopy (PALS), free volume measurements, cross-polarization/magic angle spinning (CP/MAS) C NMR, transport measurements and molecular dynamics (MD) simulations were used to uncover the molecular mechanisms leading to enhanced aging resistance. We show that partial PTMSP chain adsorption into the PPN porosity reduces the PTMSP local segmental mobility, leading to improved aging resistance. Permeability coefficients were broken into their elementary sorption and diffusion contributions, to elucidate the mechanism by which the reduced PTMSP local segmental mobility affects selectivity in gas separation applications. Finally, we demonstrate that in these systems, where both chemical and physical interactions take place, transport coefficients must be corrected for thermodynamic nonidealities to avoid erroneous interpretation of the results.

摘要

微孔玻璃状聚合物膜存在物理老化问题,这在短时间内会对其性能产生不利影响。我们发现,通过与低至5 wt%由三蝶烯和异吲哚组成的多孔聚合物网络(PPN)共混,可以有效减轻模型微孔聚合物聚(1-三甲基硅基-1-丙炔)(PTMSP)的老化倾向。通过在3周内进行N₂纯气渗透率测量来监测这些材料的老化行为,结果表明,与5 wt% PPN共混的PTMSP下降了14%,而纯PTMSP下降了41%。值得注意的是,PPN比先前用于控制PTMSP老化的多孔芳香框架便宜2个数量级。使用了多种实验和计算技术,如正电子湮没寿命谱(PALS)、自由体积测量、交叉极化/魔角旋转(CP/MAS)¹³C NMR、传输测量和分子动力学(MD)模拟,以揭示导致抗老化性能增强的分子机制。我们表明,部分PTMSP链吸附到PPN孔隙中会降低PTMSP的局部链段迁移率,从而提高抗老化性能。将渗透系数分解为其基本的吸附和扩散贡献,以阐明PTMSP局部链段迁移率降低影响气体分离应用中选择性的机制。最后,我们证明,在这些同时发生化学和物理相互作用的系统中,必须对传输系数进行热力学非理想性校正,以避免对结果的错误解读。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验