Lee Dawn, Hart Rose, Burns Darren, McCarthy Grant
PenTAG, University of Exeter, Exeter, UK.
Lumanity, Sheffield, UK.
Appl Health Econ Health Policy. 2025 Jan;23(1):131-140. doi: 10.1007/s40258-024-00918-9. Epub 2024 Sep 25.
The method used to model general population mortality estimates in cohort models can make a meaningful difference in appraisals; particularly in scenarios involving potentially curative treatments where a prior National Institute for Health and Care Excellence (NICE) appraisal demonstrated that this assumption alone could make a difference of ~£10,000 to the incremental cost-effectiveness ratio.
Our objective was to evaluate the impact of different methods for calculating general population mortality estimates on the predicted total quality-adjusted life expectancy (QALE) as well as absolute and proportional quality-adjusted life year (QALY) shortfall calculations.
We employed three distinct methods for deriving general population mortality estimates: firstly, utilizing the population mean age at baseline; secondly, modelling the distribution of mean age at baseline by fitting a parametric distribution to patient-level data sourced from the Health Survey for England (HSE); and thirdly, modelling the empirical age distribution. Subsequently, we simulated patient age distributions to explore the effects of mean starting age and variance levels on the predicted QALE and applicable severity modifiers. Provided sample code in R and Visual Basic for Applications (VBA) facilitates the utilization of individual patient age and sex data to generate weighted average survival and health-related quality of life (utility) outputs.
We observed differences of up to 10.4% (equivalent to a difference of 1.01 QALYs in quality-adjusted life-expectancy) between methods using the HSE dataset. In our simulation study, increasing variance in baseline age diminished the accuracy of predictions relying solely on mean age estimation. Differences of -0.30 to 2.24 QALYs were found at a standard deviation of 20%; commonly observed in trials. For potentially curative treatments this would represent a difference in economically justifiable price of -£4,500-+£33,600 at a cost-effectiveness threshold of £30,000 per QALY for a treatment with a 50% cure rate. For lower baseline ages, the population mean method tended to overestimate QALE, whereas for higher baseline ages, it tended to underestimate QALE compared with individual patient age-based approaches. The severity modifier assigned did not vary, however, apart from simulations with means at the extremes of the age distribution or with very high variance.
Our analysis underscores the necessity of accounting for the distribution of mean age at baseline, as failure to do so can lead to inaccurate QALE estimates, thereby affecting calculations of incremental costs and QALYs in models, which base survival and quality of life predictions on general population expectations. We would recommend that patient age and sex distribution should be accounted for when incorporating general population mortality in economic models. Provided sufficient sample size, utilizing the observed empirical distribution for the expected population in clinical practice is likely to yield the most accurate results. However, in the absence of patient-level data, selecting a suitable parametric distribution is recommended.
队列模型中用于模拟一般人群死亡率估计的方法在评估中可能会产生显著差异;特别是在涉及潜在治愈性治疗的情况下,英国国家卫生与临床优化研究所(NICE)先前的一项评估表明,仅这一假设就可能使增量成本效益比相差约10,000英镑。
我们的目的是评估计算一般人群死亡率估计值的不同方法对预测的总质量调整预期寿命(QALE)以及绝对和比例质量调整生命年(QALY)短缺计算的影响。
我们采用了三种不同的方法来推导一般人群死亡率估计值:首先,利用基线时的人群平均年龄;其次,通过将参数分布拟合到来自英格兰健康调查(HSE)的患者水平数据来模拟基线时平均年龄的分布;第三,模拟经验年龄分布。随后,我们模拟患者年龄分布,以探讨平均起始年龄和方差水平对预测的QALE和适用的严重程度修正因子的影响。提供的R和应用程序可视化 Basic(VBA)示例代码有助于利用个体患者的年龄和性别数据来生成加权平均生存率和与健康相关的生活质量(效用)输出。
我们观察到,使用HSE数据集的方法之间存在高达10.4%的差异(相当于质量调整预期寿命相差1.01个QALY)。在我们的模拟研究中,基线年龄方差的增加降低了仅依赖平均年龄估计的预测准确性。在标准差为20%时发现差异为-0.30至2.24个QALY;这在试验中很常见。对于潜在的治愈性治疗,在每QALY成本效益阈值为30,000英镑、治愈率为50%的治疗中,这将代表经济上合理价格的差异为-4,500英镑至+33,600英镑。对于较低的基线年龄,总体平均法往往高估QALE,而对于较高的基线年龄,与基于个体患者年龄的方法相比,它往往低估QALE。然而,除了在年龄分布极端均值或方差非常高时的模拟外,分配的严重程度修正因子没有变化。
我们的分析强调了考虑基线平均年龄分布的必要性,因为不这样做可能导致QALE估计不准确,从而影响模型中增量成本和QALY的计算,这些模型基于一般人群预期进行生存和生活质量预测。我们建议在经济模型中纳入一般人群死亡率时应考虑患者年龄和性别分布。如果样本量足够,在临床实践中利用观察到的预期人群的经验分布可能会产生最准确的结果。然而,在没有患者水平数据的情况下,建议选择合适的参数分布。