Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan, USA.
Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA.
Clin Transl Gastroenterol. 2024 Sep 1;15(9):e1. doi: 10.14309/ctg.0000000000000743.
Pharmacologic therapies for symptoms of gastroparesis (GP) have limited efficacy, and it is difficult to predict which patients will respond. In this study, we implemented a machine learning model to predict the response to prokinetics and/or neuromodulators in patients with GP-like symptoms.
Subjects with suspected GP underwent simultaneous gastric emptying scintigraphy (GES) and wireless motility capsule and were followed for 6 months. Subjects were included if they were started on neuromodulators and/or prokinetics. Subjects were considered responders if their GP Cardinal Symptom Index at 6 months decreased by ≥1 from baseline. A machine learning model was trained using lasso regression, ridge regression, or random forest. Five-fold cross-validation was used to train the models, and the area under the receiver operator characteristic curve (AUC-ROC) was calculated using the test set.
Of the 150 patients enrolled, 123 patients received either a prokinetic and/or a neuromodulator. Of the 123, 45 were considered responders and 78 were nonresponders. A ridge regression model with the variables, such as body mass index, infectious prodrome, delayed gastric emptying scintigraphy, no diabetes, had the highest AUC-ROC of 0.72. The model performed well for subjects on prokinetics without neuromodulators (AUC-ROC of 0.83) but poorly for those on neuromodulators without prokinetics. A separate model with gastric emptying time, duodenal motility index, no diabetes, and functional dyspepsia performed better (AUC-ROC of 0.75).
This machine learning model has an acceptable accuracy in predicting those who will respond to neuromodulators and/or prokinetics. If validated, our model provides valuable data in predicting treatment outcomes in patients with GP-like symptoms.
治疗胃轻瘫(GP)症状的药物疗效有限,且难以预测哪些患者会有反应。在这项研究中,我们建立了一个机器学习模型,以预测具有 GP 样症状的患者对促动力药和/或神经调节剂的反应。
疑似 GP 的患者接受胃排空闪烁显像(GES)和无线动力胶囊检查,并随访 6 个月。如果患者开始使用神经调节剂和/或促动力药,则纳入研究。如果患者 6 个月时 GP 主要症状指数(GP Cardinal Symptom Index)较基线下降≥1,则认为是应答者。使用套索回归、岭回归或随机森林建立机器学习模型。使用 5 折交叉验证对模型进行训练,并使用测试集计算接收者操作特征曲线下面积(AUC-ROC)。
在纳入的 150 例患者中,123 例患者接受了促动力药和/或神经调节剂治疗。在这 123 例患者中,45 例被认为是应答者,78 例是非应答者。具有体重指数、感染前驱症状、胃排空闪烁显像延迟、无糖尿病等变量的岭回归模型具有最高的 AUC-ROC(0.72)。对于未使用神经调节剂的促动力药患者,该模型表现良好(AUC-ROC 为 0.83),但对于未使用促动力药的神经调节剂患者表现不佳。一个具有胃排空时间、十二指肠动力指数、无糖尿病和功能性消化不良的单独模型表现更好(AUC-ROC 为 0.75)。
这个机器学习模型在预测对神经调节剂和/或促动力药有反应的患者方面具有可接受的准确性。如果得到验证,我们的模型为预测具有 GP 样症状的患者的治疗结果提供了有价值的数据。