Suppr超能文献

使用机器学习预测疑似胃轻瘫患者对神经调节剂或促动力剂的反应:“BMI、感染前驱期、胃排空延迟和无糖尿病”模型。

Predicting Response to Neuromodulators or Prokinetics in Patients With Suspected Gastroparesis Using Machine Learning: The "BMI, Infectious Prodrome, Delayed GES, and No Diabetes" Model.

机构信息

Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan, USA.

Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA.

出版信息

Clin Transl Gastroenterol. 2024 Sep 1;15(9):e1. doi: 10.14309/ctg.0000000000000743.

Abstract

INTRODUCTION

Pharmacologic therapies for symptoms of gastroparesis (GP) have limited efficacy, and it is difficult to predict which patients will respond. In this study, we implemented a machine learning model to predict the response to prokinetics and/or neuromodulators in patients with GP-like symptoms.

METHODS

Subjects with suspected GP underwent simultaneous gastric emptying scintigraphy (GES) and wireless motility capsule and were followed for 6 months. Subjects were included if they were started on neuromodulators and/or prokinetics. Subjects were considered responders if their GP Cardinal Symptom Index at 6 months decreased by ≥1 from baseline. A machine learning model was trained using lasso regression, ridge regression, or random forest. Five-fold cross-validation was used to train the models, and the area under the receiver operator characteristic curve (AUC-ROC) was calculated using the test set.

RESULTS

Of the 150 patients enrolled, 123 patients received either a prokinetic and/or a neuromodulator. Of the 123, 45 were considered responders and 78 were nonresponders. A ridge regression model with the variables, such as body mass index, infectious prodrome, delayed gastric emptying scintigraphy, no diabetes, had the highest AUC-ROC of 0.72. The model performed well for subjects on prokinetics without neuromodulators (AUC-ROC of 0.83) but poorly for those on neuromodulators without prokinetics. A separate model with gastric emptying time, duodenal motility index, no diabetes, and functional dyspepsia performed better (AUC-ROC of 0.75).

DISCUSSION

This machine learning model has an acceptable accuracy in predicting those who will respond to neuromodulators and/or prokinetics. If validated, our model provides valuable data in predicting treatment outcomes in patients with GP-like symptoms.

摘要

简介

治疗胃轻瘫(GP)症状的药物疗效有限,且难以预测哪些患者会有反应。在这项研究中,我们建立了一个机器学习模型,以预测具有 GP 样症状的患者对促动力药和/或神经调节剂的反应。

方法

疑似 GP 的患者接受胃排空闪烁显像(GES)和无线动力胶囊检查,并随访 6 个月。如果患者开始使用神经调节剂和/或促动力药,则纳入研究。如果患者 6 个月时 GP 主要症状指数(GP Cardinal Symptom Index)较基线下降≥1,则认为是应答者。使用套索回归、岭回归或随机森林建立机器学习模型。使用 5 折交叉验证对模型进行训练,并使用测试集计算接收者操作特征曲线下面积(AUC-ROC)。

结果

在纳入的 150 例患者中,123 例患者接受了促动力药和/或神经调节剂治疗。在这 123 例患者中,45 例被认为是应答者,78 例是非应答者。具有体重指数、感染前驱症状、胃排空闪烁显像延迟、无糖尿病等变量的岭回归模型具有最高的 AUC-ROC(0.72)。对于未使用神经调节剂的促动力药患者,该模型表现良好(AUC-ROC 为 0.83),但对于未使用促动力药的神经调节剂患者表现不佳。一个具有胃排空时间、十二指肠动力指数、无糖尿病和功能性消化不良的单独模型表现更好(AUC-ROC 为 0.75)。

讨论

这个机器学习模型在预测对神经调节剂和/或促动力药有反应的患者方面具有可接受的准确性。如果得到验证,我们的模型为预测具有 GP 样症状的患者的治疗结果提供了有价值的数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbde/11421729/cb65e8d61541/ct9-15-e1f-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验