Smith Alexander D, Donley Gavin J, Del Gado Emanuela, Zavala Victor M
Department of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, Minnesota 55455, United States.
Department of Physics, Georgetown University, Washington, DC 20057, United States.
ACS Nano. 2024 Oct 22;18(42):28622-28635. doi: 10.1021/acsnano.4c04969. Epub 2024 Sep 25.
Soft gels, formed via the self-assembly of particulate materials, exhibit intricate multiscale structures that provide them with flexibility and resilience when subjected to external stresses. This work combines particle simulations and topological data analysis (TDA) to characterize the complex multiscale structure of soft gels. Our TDA analysis focuses on the use of the Euler characteristic, which is an interpretable and computationally scalable topological descriptor that is combined with filtration operations to obtain information on the geometric (local) and topological (global) structure of soft gels. We reduce the topological information obtained with TDA using principal component analysis (PCA) and show that this provides an informative low-dimensional representation of the gel structure. We use the proposed computational framework to investigate the influence of gel preparation (e.g., quench rate, volume fraction) on soft gel structure and to explore dynamic deformations that emerge under oscillatory shear in various response regimes (linear, nonlinear, and flow). Our analysis provides evidence of the existence of hierarchical structures in soft gels, which are not easily identifiable otherwise. Moreover, our analysis reveals direct correlations between topological changes of the gel structure under deformation and mechanical phenomena distinctive of gel materials, such as stiffening and yielding. In summary, we show that TDA facilitates the mathematical representation, quantification, and analysis of soft gel structures, extending traditional network analysis methods to capture both local and global organization.
通过颗粒材料的自组装形成的软凝胶具有复杂的多尺度结构,使其在受到外部应力时具备柔韧性和弹性。这项工作结合了粒子模拟和拓扑数据分析(TDA)来表征软凝胶的复杂多尺度结构。我们的TDA分析着重于使用欧拉特征,它是一种可解释且计算可扩展的拓扑描述符,与过滤操作相结合以获取有关软凝胶几何(局部)和拓扑(全局)结构的信息。我们使用主成分分析(PCA)减少通过TDA获得的拓扑信息,并表明这提供了凝胶结构的信息丰富的低维表示。我们使用所提出的计算框架来研究凝胶制备(例如淬火速率、体积分数)对软凝胶结构的影响,并探索在各种响应状态(线性、非线性和流动)下振荡剪切时出现的动态变形。我们的分析提供了软凝胶中存在层次结构的证据,否则这些结构不容易识别。此外,我们的分析揭示了凝胶结构在变形下的拓扑变化与凝胶材料特有的力学现象(如硬化和屈服)之间的直接相关性。总之,我们表明TDA有助于软凝胶结构的数学表示、量化和分析,扩展了传统网络分析方法以捕捉局部和全局组织。