Schulte Tim, Magdaong Nikki Cecil M, Di Valentin Marilena, Agostini Alessandro, Tait Claudia E, Niedzwiedzki Dariusz M, Carbonera Donatella, Hofmann Eckhard
Protein Crystallography, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany; Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, 17121 Solna, Sweden.
Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
Biochim Biophys Acta Bioenerg. 2025 Jan 1;1866(1):149510. doi: 10.1016/j.bbabio.2024.149510. Epub 2024 Sep 24.
Light harvesting proteins are optimized to efficiently collect and transfer light energy for photosynthesis. In eukaryotic dinoflagellates these complexes utilize chlorophylls and a special carotenoid, peridinin, and arrange them for efficient excitation energy transfer. At the same time, the carotenoids protect the system by quenching harmful chlorophyll triplet states. Here we use advanced spectroscopic techniques and X-ray structure analysis to investigate excitation energy transfer processes in the major soluble antenna, the peridinin chlorophyll a protein (PCP) from the free living dinoflagellate Heterocapsa pygmaea. We determined the 3D-structure of this complex at high resolution (1.2 Å). For better comparison, we improved the reference structure of this protein from Amphidinium carterae to a resolution of 1.15 Å. We then used fs and ns time-resolved absorption spectroscopy to study the mechanisms of light harvesting, but also of the photoprotective quenching of the chlorophyll triplet state. The photoprotection site was further characterized by Electron Spin Echo Envelope Modulation (ESEEM) spectroscopy to yield information on water molecules involved in triplet-triplet energy transfer. Similar to other PCP complexes, excitation energy transfer from peridinin to chlorophyll is found to be very efficient, with transfer times in the range of 1.6-2.1 ps. One of the four carotenoids, the peridinin 614, is well positioned to quench the chlorophyll triplet state with high efficiency and transfer times in the range of tens of picoseconds. Our structural and dynamic data further support, that the intrinsic water molecule coordinating the chlorophyll Mg ion plays an essential role in photoprotection.
光捕获蛋白经过优化,可高效收集和传递光能以进行光合作用。在真核生物甲藻中,这些复合物利用叶绿素和一种特殊的类胡萝卜素——多甲藻素,并对它们进行排列以实现高效的激发能传递。同时,类胡萝卜素通过淬灭有害的叶绿素三线态来保护该系统。在此,我们使用先进的光谱技术和X射线结构分析来研究主要可溶性天线——来自自由生活的微小异帽藻的多甲藻素叶绿素a蛋白(PCP)中的激发能传递过程。我们以高分辨率(1.2 Å)确定了该复合物的三维结构。为了更好地进行比较,我们将来自卡氏扁藻的这种蛋白质的参考结构分辨率提高到了1.15 Å。然后,我们使用飞秒和纳秒时间分辨吸收光谱来研究光捕获机制,以及叶绿素三线态的光保护淬灭机制。通过电子自旋回波包络调制(ESEEM)光谱进一步表征了光保护位点,以获取有关参与三线态-三线态能量转移的水分子的信息。与其他PCP复合物类似,发现从多甲藻素到叶绿素的激发能传递非常高效,转移时间在1.6 - 2.1皮秒范围内。四种类胡萝卜素之一的多甲藻素614位置良好,能够高效淬灭叶绿素三线态,转移时间在几十皮秒范围内。我们的结构和动力学数据进一步支持,配位叶绿素镁离子的内在水分子在光保护中起着至关重要的作用。