Department Mechanical Engineering, University of Washington, Seattle, WA, United States of America.
Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, NY, New York City, United States of America.
Phys Med Biol. 2024 Oct 8;69(20). doi: 10.1088/1361-6560/ad7fc9.
Magnetic resonance elastography (MRE) is a non-invasive method for determining the mechanical response of tissues using applied harmonic deformation and motion-sensitive MRI. MRE studies of the human brain are typically performed at conventional field strengths, with a few attempts at the ultra-high field strength, 7T, reporting increased spatial resolution with partial brain coverage. Achieving high-resolution human brain scans using 7T MRE presents unique challenges of decreased octahedral shear strain-based signal-to-noise ratio (OSS-SNR) and lower shear wave motion sensitivity. In this study, we establish high resolution MRE at 7T with a custom 2D multi-slice single-shot spin-echo echo-planar imaging sequence, using the Gadgetron advanced image reconstruction framework, applying Marchenko-Pastur Principal component analysis denoising, and using nonlinear viscoelastic inversion. These techniques allowed us to calculate the viscoelastic properties of the whole human brain at 1.1 mm isotropic imaging resolution with high OSS-SNR and repeatability. Using phantom models and 7T MRE data of eighteen healthy volunteers, we demonstrate the robustness and accuracy of our method at high-resolution while quantifying the feasible tradeoff between resolution, OSS-SNR, and scan time. Using these post-processing techniques, we significantly increased OSS-SNR at 1.1 mm resolution with whole-brain coverage by approximately 4-fold and generated elastograms with high anatomical detail. Performing high-resolution MRE at 7T on the human brain can provide information on different substructures within brain tissue based on their mechanical properties, which can then be used to diagnose pathologies (e.g. Alzheimer's disease), indicate disease progression, or better investigate neurodegeneration effects or other relevant brain disorders,.
磁共振弹性成像(MRE)是一种使用外加谐变变形和运动敏感 MRI 来测定组织力学响应的非侵入性方法。人体大脑的 MRE 研究通常在常规场强下进行,少数尝试在超高场强 7T 下进行,报道称部分脑覆盖的空间分辨率有所提高。使用 7T MRE 进行高分辨率的人脑扫描存在独特的挑战,包括基于八面体剪切应变的信噪比(OSS-SNR)降低和剪切波运动灵敏度降低。在这项研究中,我们使用定制的 2D 多切片单次激发自旋回波回波平面成像序列,结合 Gadgetron 高级图像重建框架,应用 Marchenko-Pastur 主成分分析去噪和非线性粘弹性反演,在 7T 下建立了高分辨率的 MRE。这些技术使我们能够以 1.1mm 的各向同性成像分辨率计算整个大脑的粘弹性特性,具有高 OSS-SNR 和可重复性。使用体模模型和 18 名健康志愿者的 7T MRE 数据,我们证明了我们的方法在高分辨率下的稳健性和准确性,同时量化了分辨率、OSS-SNR 和扫描时间之间的可行权衡。通过使用这些后处理技术,我们在全脑覆盖的情况下,将 1.1mm 分辨率下的 OSS-SNR 提高了约 4 倍,生成了具有高解剖细节的弹性图。在 7T 上对人脑进行高分辨率 MRE 可以根据其力学特性提供脑组织内不同亚结构的信息,然后可以用于诊断病理学(如阿尔茨海默病),指示疾病进展,或更好地研究神经退行性变效应或其他相关的脑疾病。