Suppr超能文献

一维聚合物鞘层诱导LiLaTiO纳米线的取向晶体生长以实现快速锂离子转移

Oriented Crystal Growth of LiLaTiO Nanowire Induced by One-Dimensional Polymer Sheath toward Rapid Lithium-Ion Transfer.

作者信息

Kou Weijie, Zhang Junmei, Wang Chenye, Wu Wenjia, Zhang Jie, Yang Zhirong, Dai Kun, Wang Jingtao

机构信息

School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.

Zhongyuan Critical Metals Laboratory, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.

出版信息

ACS Nano. 2024 Oct 8;18(40):27683-27693. doi: 10.1021/acsnano.4c09863. Epub 2024 Sep 26.

Abstract

Superionic conductor-based solid-state electrolytes with preferred crystal structures hold great promise for realizing ultrafast lithium-ion (Li) transfer, which is urgently desired for all-solid-state lithium batteries. However, the precise control of crystal growth of superionic conductors is still challenging since the crystals always spontaneously grow to disordered structures with the lowest internal energy to ensure thermodynamic stability. Herein, a coaxial nanowire with a polyvinylpyrrolidone (PVP) sheath and a LiLaTiO (LLTO) precursor core (PVP/LLTO-caNW) is prepared through coaxial electrospinning, followed by sintering into LLTO nanowire with an oriented crystal structure (LLTO-caNW). We demonstrate that the one-dimensional PVP sheath as a sacrificial layer generates uniform and the strongest adsorption ability on the (110) phase among different LLTO crystal planes, which induces the crystal to preferentially grow along the -axis (the fastest Li transfer direction) during the nucleation and growth processes. As a result, the prepared LLTO-caNW displays an ultrahigh bulk ionic conductivity of 3.13 × 10 S cm, exceeding most LLTO crystals and approaching the theoretical conductivity. Meanwhile, the oriented crystal growth imparts to LLTO-caNW significantly reduced grain boundary resistance, and the grain-boundary conductivity reaches up to 1.09 × 10 S cm. This endows the composite solid electrolyte with high ionic conduction performance and superior cycle stability in the assembled all-solid-state lithium battery.

摘要

具有优选晶体结构的基于超离子导体的固态电解质对于实现超快锂离子传输具有巨大潜力,这是全固态锂电池迫切需要的。然而,超离子导体晶体生长的精确控制仍然具有挑战性,因为晶体总是自发地生长为具有最低内能的无序结构以确保热力学稳定性。在此,通过同轴静电纺丝制备了一种具有聚乙烯吡咯烷酮(PVP)鞘层和LiLaTiO(LLTO)前驱体核的同轴纳米线(PVP/LLTO-caNW),随后烧结成具有取向晶体结构的LLTO纳米线(LLTO-caNW)。我们证明,作为牺牲层的一维PVP鞘层在不同LLTO晶面中对(110)相产生均匀且最强的吸附能力,这诱导晶体在成核和生长过程中优先沿z轴(最快的锂传输方向)生长。结果,制备的LLTO-caNW显示出3.13×10 S cm的超高体离子电导率,超过大多数LLTO晶体并接近理论电导率。同时,取向晶体生长使LLTO-caNW的晶界电阻显著降低,晶界电导率高达1.09×10 S cm。这赋予复合固态电解质在组装的全固态锂电池中高离子传导性能和优异的循环稳定性。

相似文献

1
Oriented Crystal Growth of LiLaTiO Nanowire Induced by One-Dimensional Polymer Sheath toward Rapid Lithium-Ion Transfer.
ACS Nano. 2024 Oct 8;18(40):27683-27693. doi: 10.1021/acsnano.4c09863. Epub 2024 Sep 26.
3
Lithium-Salt-Rich PEO/LiLaTiO Interpenetrating Composite Electrolyte with Three-Dimensional Ceramic Nano-Backbone for All-Solid-State Lithium-Ion Batteries.
ACS Appl Mater Interfaces. 2018 Jul 25;10(29):24791-24798. doi: 10.1021/acsami.8b06658. Epub 2018 Jul 13.
6
Open-Structured Nanotubes with Three-Dimensional Ion-Accessible Pathways for Enhanced Li Conductivity in Composite Solid Electrolytes.
ACS Appl Mater Interfaces. 2021 Mar 24;13(11):13183-13190. doi: 10.1021/acsami.0c22635. Epub 2021 Mar 9.
7
Polydopamine Coated Lithium Lanthanum Titanate in Bilayer Membrane Electrolytes for Solid Lithium Batteries.
ACS Appl Mater Interfaces. 2020 Oct 14;12(41):46231-46238. doi: 10.1021/acsami.0c14211. Epub 2020 Oct 1.
8
Polyoxyethylene (PEO)|PEO-Perovskite|PEO Composite Electrolyte for All-Solid-State Lithium Metal Batteries.
ACS Appl Mater Interfaces. 2019 Dec 18;11(50):46930-46937. doi: 10.1021/acsami.9b16936. Epub 2019 Dec 9.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验