Suppr超能文献

富氟丁二腈中间层抑制用于准固态锂金属电池的LiLaTiO纳米纤维分散的聚(偏二氟乙烯-共-六氟丙烯)电解质的脱氟化氢反应

Suppression of Dehydrofluorination Reactions of a LiLaTiO-Nanofiber-Dispersed Poly(vinylidene fluoride-co-hexafluoropropylene) Electrolyte for Quasi-Solid-State Lithium-Metal Batteries by a Fluorine-Rich Succinonitrile Interlayer.

作者信息

Rath Purna Chandra, Liu Ming-Song, Lo Shih-Ting, Dhaka Rajendra S, Bresser Dominic, Yang Chun-Chen, Lee Sheng-Wei, Chang Jeng-Kuei

机构信息

Department of Materials Science and Engineering, National Yang-Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan.

Institute of Materials Science and Engineering, National Central University, 300 Jhong-Da Road, Taoyuan 32001, Taiwan.

出版信息

ACS Appl Mater Interfaces. 2023 Mar 29;15(12):15429-15438. doi: 10.1021/acsami.2c22268. Epub 2023 Mar 15.

Abstract

Solid-state lithium-metal batteries have great potential to simultaneously achieve high safety and high energy density for energy storage. However, the low ionic conductivity of the solid electrolyte and large electrode/electrolyte interfacial impedance are bottlenecks. A composite solid electrolyte (CSE) that integrates electrospun LiLaTiO (LLTO) nanofibers, poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) is fabricated in this work. The effects of the LLTO filler fraction and morphology (spherical vs fibrous) on CSE conductivity are examined. Additionally, a fluorine-rich interlayer based on succinonitrile, fluoroethylene carbonate, and LiTFSI, denoted as succinonitrile interlayer (SNI), is developed to reduce the large interfacial impedance. The use of SNI rather than a conventional ester-based interlayer (EBI) effectively decreases the Li//CSE interfacial resistance and suppresses unfavorable interfacial side reactions. The LiF- and CF-rich solid electrolyte interphase (SEI), derived from SNI, on the Li metal electrode, mitigates the accumulation of dead Li and excessive SEI. Importantly, dehydrofluorination reactions of PVDF-HFP are significantly reduced by the introduction of SNI. A symmetric Li//CSE//Li cell with SNI exhibits a much longer cycle life than that of an EBI counterpart. A Li//CSE@SNI//LiFePO cell shows specific capacities of 150 and 112 mAh g at 0.1 and 2 C (based on LiFePO), respectively. After 100 charge-discharge cycles, 98% of the initial capacity is retained.

摘要

固态锂金属电池在实现高安全性和高能量密度储能方面具有巨大潜力。然而,固体电解质的低离子电导率和大的电极/电解质界面阻抗是瓶颈。在这项工作中,制备了一种复合固体电解质(CSE),它集成了静电纺丝的LiLaTiO(LLTO)纳米纤维、聚(偏二氟乙烯-共-六氟丙烯)(PVDF-HFP)和双(三氟甲烷磺酰)亚胺锂(LiTFSI)。研究了LLTO填料分数和形态(球形与纤维状)对CSE电导率的影响。此外,还开发了一种基于丁二腈、氟代碳酸乙烯酯和LiTFSI的富氟中间层,称为丁二腈中间层(SNI),以降低大的界面阻抗。使用SNI而非传统的酯基中间层(EBI)有效地降低了Li//CSE界面电阻,并抑制了不利的界面副反应。Li金属电极上源自SNI的富含LiF和CF的固体电解质界面(SEI)减轻了死锂和过量SEI的积累。重要的是,通过引入SNI,PVDF-HFP的脱氟化氢反应显著减少。具有SNI的对称Li//CSE//Li电池的循环寿命比具有EBI的对应电池长得多。Li//CSE@SNI//LiFePO电池在0.1和2 C(基于LiFePO)下的比容量分别为150和112 mAh g。经过100次充放电循环后,保留了98%的初始容量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验