Suppr超能文献

评论,“卓越的微血管超声是一种有前途的非侵入性诊断工具,可评估脑室-腹腔分流系统功能:一项可行性研究”。

Comment on, "Superb microvascular ultrasound is a promising non-invasive diagnostic tool to assess a ventriculoperitoneal shunt system function: a feasibility study".

机构信息

Lab in Biotechnology and Biosignal Transduction, Department of Orthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha university, Chennai-77, Tamil Nadu, India.

出版信息

Neurosurg Rev. 2024 Sep 26;47(1):687. doi: 10.1007/s10143-024-02918-8.

Abstract

This study by Brawanski et al. (2024) contributes significantly to neurosurgery by assessing ventriculoperitoneal shunt (VPS) function using superb microvascular ultrasound (SMI). The authors provide a thorough evaluation of SMI as a novel, non-invasive diagnostic tool, demonstrating its effectiveness in detecting cerebrospinal fluid (CSF) flow within VPS systems. By focusing on asymptomatic hydrocephalus patients, the study offers a less invasive alternative to traditional diagnostic methods, potentially reducing the need for exploratory surgeries. However, the study could have been strengthened by exploring the variability of SMI measurements under different physiological conditions and including symptomatic patients. Additionally, further analysis of the long-term reliability of SMI is needed. Future research should expand the study's scope to assess SMI's diagnostic capabilities across varied conditions and explore its integration with other non-invasive techniques, thereby enhancing its clinical utility in managing hydrocephalus and VPS functionality.

摘要

这项由 Brawanski 等人进行的研究(2024 年)通过使用卓越的微血管超声(SMI)评估脑室-腹腔分流术(VPS)的功能,为神经外科学做出了重要贡献。作者全面评估了 SMI 作为一种新颖的、非侵入性的诊断工具的有效性,证明了其在检测 VPS 系统内脑脊液(CSF)流动方面的作用。通过关注无症状性脑积水患者,该研究为传统诊断方法提供了一种侵入性更小的替代方案,可能减少了对探索性手术的需求。然而,本研究可以通过探索不同生理条件下 SMI 测量的可变性并纳入有症状的患者来加以强化。此外,还需要对 SMI 的长期可靠性进行进一步分析。未来的研究应扩大研究范围,评估 SMI 在各种情况下的诊断能力,并探索其与其他非侵入性技术的整合,从而提高其在管理脑积水和 VPS 功能方面的临床实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验