Suppr超能文献

评估角色扮演提示对 ChatGPT 错误信息检测准确率的影响:定量研究。

Evaluating the Influence of Role-Playing Prompts on ChatGPT's Misinformation Detection Accuracy: Quantitative Study.

机构信息

Department of Cognitive Science, University of California, San Diego, La Jolla, CA, United States.

Global Health Program, Department of Anthropology, University of California, San Diego, La Jolla, CA, United States.

出版信息

JMIR Infodemiology. 2024 Sep 26;4:e60678. doi: 10.2196/60678.

Abstract

BACKGROUND

During the COVID-19 pandemic, the rapid spread of misinformation on social media created significant public health challenges. Large language models (LLMs), pretrained on extensive textual data, have shown potential in detecting misinformation, but their performance can be influenced by factors such as prompt engineering (ie, modifying LLM requests to assess changes in output). One form of prompt engineering is role-playing, where, upon request, OpenAI's ChatGPT imitates specific social roles or identities. This research examines how ChatGPT's accuracy in detecting COVID-19-related misinformation is affected when it is assigned social identities in the request prompt. Understanding how LLMs respond to different identity cues can inform messaging campaigns, ensuring effective use in public health communications.

OBJECTIVE

This study investigates the impact of role-playing prompts on ChatGPT's accuracy in detecting misinformation. This study also assesses differences in performance when misinformation is explicitly stated versus implied, based on contextual knowledge, and examines the reasoning given by ChatGPT for classification decisions.

METHODS

Overall, 36 real-world tweets about COVID-19 collected in September 2021 were categorized into misinformation, sentiment (opinions aligned vs unaligned with public health guidelines), corrections, and neutral reporting. ChatGPT was tested with prompts incorporating different combinations of multiple social identities (ie, political beliefs, education levels, locality, religiosity, and personality traits), resulting in 51,840 runs. Two control conditions were used to compare results: prompts with no identities and those including only political identity.

RESULTS

The findings reveal that including social identities in prompts reduces average detection accuracy, with a notable drop from 68.1% (SD 41.2%; no identities) to 29.3% (SD 31.6%; all identities included). Prompts with only political identity resulted in the lowest accuracy (19.2%, SD 29.2%). ChatGPT was also able to distinguish between sentiments expressing opinions not aligned with public health guidelines from misinformation making declarative statements. There were no consistent differences in performance between explicit and implicit misinformation requiring contextual knowledge. While the findings show that the inclusion of identities decreased detection accuracy, it remains uncertain whether ChatGPT adopts views aligned with social identities: when assigned a conservative identity, ChatGPT identified misinformation with nearly the same accuracy as it did when assigned a liberal identity. While political identity was mentioned most frequently in ChatGPT's explanations for its classification decisions, the rationales for classifications were inconsistent across study conditions, and contradictory explanations were provided in some instances.

CONCLUSIONS

These results indicate that ChatGPT's ability to classify misinformation is negatively impacted when role-playing social identities, highlighting the complexity of integrating human biases and perspectives in LLMs. This points to the need for human oversight in the use of LLMs for misinformation detection. Further research is needed to understand how LLMs weigh social identities in prompt-based tasks and explore their application in different cultural contexts.

摘要

背景

在 COVID-19 大流行期间,社交媒体上错误信息的快速传播给公共卫生带来了巨大挑战。大型语言模型(LLM)通过对大量文本数据进行预训练,在检测错误信息方面显示出了潜力,但它们的性能可能会受到提示工程(例如,修改 LLM 请求以评估输出变化)等因素的影响。提示工程的一种形式是角色扮演,即根据请求,OpenAI 的 ChatGPT 模仿特定的社会角色或身份。本研究探讨了当在请求提示中分配社会身份时,ChatGPT 检测与 COVID-19 相关错误信息的准确性会受到怎样的影响。了解 LLM 如何响应不同的身份提示可以为信息传递活动提供信息,确保在公共卫生通信中有效使用。

目的

本研究调查角色扮演提示对 ChatGPT 检测错误信息准确性的影响。本研究还评估了当错误信息基于上下文知识明确陈述与暗示陈述时,性能的差异,并检查 ChatGPT 为分类决策提供的推理。

方法

总的来说,我们收集了 2021 年 9 月的 36 条关于 COVID-19 的真实推文,将其分为错误信息、情绪(与公共卫生指南一致或不一致的意见)、纠正信息和中立报道。ChatGPT 接受了不同组合的多个社会身份(即政治信仰、教育水平、地理位置、宗教信仰和性格特征)的提示测试,共进行了 51840 次测试。使用两个对照条件进行比较:没有身份的提示和仅包含政治身份的提示。

结果

研究结果表明,在提示中包含社会身份会降低平均检测准确性,从没有身份时的 68.1%(标准差 41.2%)显著下降到包含所有身份时的 29.3%(标准差 31.6%)。仅包含政治身份的提示导致最低的准确性(19.2%,标准差 29.2%)。ChatGPT 还能够区分表达与公共卫生指南不一致的意见的情绪与明确陈述错误信息的区别。需要基于上下文知识的明确陈述错误信息和暗示错误信息之间的性能没有一致差异。虽然研究结果表明,包含身份会降低检测准确性,但尚不确定 ChatGPT 是否会采用与社会身份一致的观点:当被赋予保守身份时,ChatGPT 对错误信息的识别准确性与赋予自由派身份时几乎相同。虽然在 ChatGPT 对其分类决策的解释中,政治身份被提及的频率最高,但在研究条件下,分类的理由并不一致,并且在某些情况下提供了相互矛盾的解释。

结论

这些结果表明,当角色扮演社会身份时,ChatGPT 识别错误信息的能力受到负面影响,这突出了在 LLM 中整合人类偏见和观点的复杂性。这表明在使用 LLM 进行错误信息检测时需要人工监督。需要进一步研究以了解 LLM 如何在基于提示的任务中权衡社会身份,并探索它们在不同文化背景下的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/610b/11467603/aefd3c89952f/infodemiology_v4i1e60678_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验