Suppr超能文献

Editorial Commentary: Machine Learning and Artificial Intelligence Are Valuable Tools yet Dependent on the Data Input.

作者信息

Hiemstra Laurie A

机构信息

University of Calgary.

出版信息

Arthroscopy. 2025 Jun;41(6):1909-1911. doi: 10.1016/j.arthro.2024.09.030. Epub 2024 Sep 24.

Abstract

Machine learning is likely to become one of the most valuable tools for predicting outcomes in patients with patellofemoral instability. Traditional statistical analysis is challenging in this diagnosis as the result of the multitude of risk factors. However, 3 important cautions must be considered. (1) Machine learning is limited by the quality of the data entered. Many of the risk factors for patellofemoral instability rely on classification systems with significant interexaminer variability and patient-reported outcomes used to track changes contain inherent biases, especially with regard to race and gender. Poor data quality will lead to unreliable predictions, or "garbage in equals garbage out." (2) The optimal machine-learning algorithms for addressing specific clinical questions remain uncertain. (3) The question of how much data we really need for accurate analysis is unresolved, which again, is completely dependent on the quality of the data. Machine learning is the future; just beware of what goes into the chicken salad.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验