Suppr超能文献

基于卵巢附件报告和数据系统MRI的卵巢病变的MRI评估与特征分析

MRI Evaluation and Characterization of Ovarian Lesions Based on Ovarian-Adnexal Reporting and Data System MRI.

作者信息

Lamghare Purnachandra, Paidlewar Sayali, Arkar Rahul, Rangankar Varsha, Sharma Ojasvi, Julakanti Sravya, Pandey Ankita

机构信息

Radiology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to Be University), Pune, IND.

出版信息

Cureus. 2024 Aug 27;16(8):e67904. doi: 10.7759/cureus.67904. eCollection 2024 Aug.

Abstract

Background Managing ovarian lesions requires differentiating between benign and malignant cases. The development of a multiparametric MRI approach combining anatomical and functional criteria has led to the creation of the Ovarian-Adnexal Reporting and Data System (O-RADS) MRI scoring system, which enhances diagnostic accuracy. Objectives To study ovarian lesions and their characteristics, along with their risk stratification based on MRI O-RADS. Methods  A prospective study used the O-RADS MRI criteria to categorize ovarian lesions. Clinical findings and MRI results were compared with histopathological outcomes to assess diagnostic accuracy. Results We identified abdominal pain as the most prevalent clinical finding among our cases (64, 91.43%), followed by a lump in the abdomen (33, 47.5%), dysmenorrhea (33, 47.5%), bleeding per vaginal (15, 21.43%), and weight loss (11, 15.71%). A total of 80 ovarian lesions were examined and characterized on the basis of the O-RADS MRI risk stratification system. Among the 80 ovarian lesions, 54 were histopathologically confirmed ovarian lesions (39 (72.22%) were benign, and 15 (27.77%) were malignant). The most common benign lesions were ovarian serous cystadenoma (28.20%) and ovarian mucinous cystadenoma (20.51%), while the most common malignant lesions were serous carcinoma (33.33%) and mucinous carcinoma (20%). Using the O-RADS MRI scoring system, we categorized six lesions (7.5%) as O-RADS 1 (all benign), 34 lesions (42.50%) as O-RADS 2 (32 benign and 2 malignant), 24 lesions (30%) as O-RADS 3 (23 benign and 1 malignant), seven lesions (8.75%) as O-RADS 4 (four benign and three malignant), and nine lesions (11.25%) as O-RADS 5 (all malignant). Our findings revealed significant differences in the size of lesions, the presence of thick septa, high T2-weighted signal intensity within solid tissue, and patterns of solid component enhancement and wall irregularity between malignant and benign lesions. The MRI cut-off score of ≥4 for malignancy demonstrated a sensitivity of 94.59%, a specificity of 97.5%, an accuracy of 97.62%, a positive predictive value of 94.5%, and a negative predictive value of 97.5%. The positive likelihood ratio was 32.7, while the negative likelihood ratio was 0.025. These results affirm the high diagnostic accuracy of the O-RADS MRI scoring system in distinguishing benign from malignant ovarian lesions. Conclusion The O-RADS MRI score is a highly accurate tool for differentiating between benign and malignant ovarian lesions. Its application can significantly enhance the management and treatment outcomes for patients with adnexal masses. The study confirms the scoring system's high sensitivity, specificity, and overall diagnostic accuracy.

摘要

背景 处理卵巢病变需要区分良性和恶性病例。结合解剖学和功能标准的多参数MRI方法的发展催生了卵巢附件报告和数据系统(O-RADS)MRI评分系统,该系统提高了诊断准确性。目的 研究卵巢病变及其特征,以及基于MRI O-RADS的风险分层。方法 一项前瞻性研究使用O-RADS MRI标准对卵巢病变进行分类。将临床发现和MRI结果与组织病理学结果进行比较,以评估诊断准确性。结果 我们发现腹痛是我们病例中最常见的临床发现(64例,91.43%),其次是腹部肿块(33例,47.5%)、痛经(33例,47.5%)、阴道出血(15例,21.43%)和体重减轻(11例,15.71%)。根据O-RADS MRI风险分层系统对总共80个卵巢病变进行了检查和特征描述。在这80个卵巢病变中,54个经组织病理学证实为卵巢病变(39个(72.22%)为良性,15个(27.77%)为恶性)。最常见的良性病变是卵巢浆液性囊腺瘤(28.20%)和卵巢黏液性囊腺瘤(20.51%),而最常见的恶性病变是浆液性癌(33.33%)和黏液性癌(20%)。使用O-RADS MRI评分系统,我们将6个病变(7.5%)分类为O-RADS 1(均为良性),34个病变(42.50%)分类为O-RADS 2(32个良性和2个恶性),24个病变(30%)分类为O-RADS 3(23个良性和1个恶性),7个病变(8.75%)分类为O-RADS 4(4个良性和3个恶性),9个病变(11.25%)分类为O-RADS 5(均为恶性)。我们的研究结果显示,恶性和良性病变在病变大小、厚分隔的存在、实性组织内高T2加权信号强度以及实性成分强化模式和壁不规则方面存在显著差异。恶性肿瘤的MRI截断分数≥4显示出94.59%的敏感性、97.5%的特异性、97.62%的准确性、94.5%的阳性预测值和97.5%的阴性预测值。阳性似然比为32.7,而阴性似然比为0.025。这些结果证实了O-RADS MRI评分系统在区分良性和恶性卵巢病变方面具有很高的诊断准确性。结论 O-RADS MRI评分是区分良性和恶性卵巢病变的高度准确工具。其应用可以显著改善附件肿块患者的管理和治疗结果。该研究证实了评分系统的高敏感性、特异性和总体诊断准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/458b/11426925/1b270ffa01c9/cureus-0016-00000067904-i01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验