Suppr超能文献

通过对人血清无标记表面增强拉曼光谱进行深度学习分析实现致癌感染类型的快速剖析。

Rapid profiling of carcinogenic types of infection via deep learning analysis of label-free SERS spectra of human serum.

作者信息

Li Fen, Si Yu-Ting, Tang Jia-Wei, Umar Zeeshan, Xiong Xue-Song, Wang Jin-Ting, Yuan Quan, Tay Alfred Chin Yen, Chua Eng Guan, Zhang Li, Marshall Barry J, Yang Wei-Xuan, Gu Bing, Wang Liang

机构信息

Department of Laboratory Medicine, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huai'an, Jiangsu, China.

Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.

出版信息

Comput Struct Biotechnol J. 2024 Sep 16;23:3379-3390. doi: 10.1016/j.csbj.2024.09.008. eCollection 2024 Dec.

Abstract

WHO classified as a Group I carcinogen for gastric cancer as early as 1994. However, despite the high prevalence of infection, only about 3 % of infected individuals eventually develop gastric cancer, with the highly virulent strains expressing cytotoxin-associated protein (CagA) and vacuolating cytotoxin (VacA) being critical factors in gastric carcinogenesis. It is well known that infection is divided into two types in terms of the presence and absence of CagA and VacA toxins in serum, that is, carcinogenic Type I infection (CagA+/VacA+, CagA+/VacA-, CagA-/VacA+) and non-carcinogenic Type II infection (CagA-/VacA-). Currently, detecting the two carcinogenic toxins in active modes is mainly done by diagnosing their serological antibodies. However, the method is restricted by expensive reagents and intricate procedures. Therefore, establishing a rapid, accurate, and cost-effective way for serological profiling of carcinogenic infection holds significant implications for effectively guiding eradication and gastric cancer prevention. In this study, we developed a novel method by combining surface-enhanced Raman spectroscopy with the deep learning algorithm convolutional neural network to create a model for distinguishing between serum samples with Type I and Type II infections. This method holds the potential to facilitate rapid screening of infections with high risks of carcinogenesis at the population level, which can have long-term benefits in reducing gastric cancer incidence when used for guiding the eradication of infections.

摘要

早在1994年,世界卫生组织就将其列为胃癌的I类致癌物。然而,尽管感染率很高,但只有约3%的感染者最终会患上胃癌,表达细胞毒素相关蛋白(CagA)和空泡毒素(VacA)的高毒力菌株是胃癌发生的关键因素。众所周知,根据血清中CagA和VacA毒素的有无,感染可分为两种类型,即致癌I型感染(CagA+/VacA+、CagA+/VacA-、CagA-/VacA+)和非致癌II型感染(CagA-/VacA-)。目前,主动检测这两种致癌毒素主要是通过诊断其血清学抗体来进行的。然而,该方法受到昂贵试剂和复杂程序的限制。因此,建立一种快速、准确且经济高效的致癌感染血清学分析方法对于有效指导根除感染和预防胃癌具有重要意义。在本研究中,我们开发了一种将表面增强拉曼光谱与深度学习算法卷积神经网络相结合的新方法,以创建一个区分I型和II型感染血清样本的模型。该方法有潜力在人群水平上促进对具有高致癌风险的感染进行快速筛查,当用于指导根除感染时,对降低胃癌发病率具有长期益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66ed/11424770/3d55974c9f9b/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验