Suppr超能文献

Adaptive Top-K Algorithm for Medical Conversational Diagnostic Model.

作者信息

Yang Yiqing, Zhang Guoyin, Wu Yanxia, Zhao Zhixiang, Fu Yan

机构信息

Department of Computer Science, Harbin Engineering University, Harbin 150001, China.

出版信息

Entropy (Basel). 2024 Aug 30;26(9):740. doi: 10.3390/e26090740.

Abstract

With advancements in computing technology and the rapid progress of data science, machine learning has been widely applied in various fields, showing great potential, especially in digital healthcare. In recent years, conversational diagnostic systems have been used to predict diseases through symptom checking. Early systems predicted the likelihood of a single disease by minimizing the number of questions asked. However, doctors typically perform differential diagnoses in real medical practice, considering multiple possible diseases to address diagnostic uncertainty. This requires systems to ask more critical questions to improve diagnostic accuracy. Nevertheless, such systems in acute medical situations need to process information quickly and accurately, but the complexity of differential diagnosis increases the system's computational cost. To improve the efficiency and accuracy of telemedicine diagnostic systems, this study developed an optimized algorithm for the Top-K algorithm. This algorithm dynamically adjusts the number of the most likely diseases and symptoms by real-time monitoring of case progress, optimizing the diagnostic process, enhancing accuracy (99.81%), and increasing the exclusion rate of severe pathologies. Additionally, the Top-K algorithm optimizes the diagnostic model through a policy network loss function, effectively reducing the number of symptoms and diseases processed and improving the system's response speed by 1.3-1.9 times compared to the state-of-the-art differential diagnosis systems.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8d4/11431395/e5368207ed25/entropy-26-00740-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验