Suppr超能文献

从电子病历中挖掘临床路径的时间主题模型。

Temporal topic model for clinical pathway mining from electronic medical records.

机构信息

School of Computer Science and Engineering, Northeastern University, Shenyang, 110000, China.

Key Laboratory of Intelligent Computing in Medical Image (MIIC), Northeastern University, Shenyang, 110000, China.

出版信息

BMC Med Inform Decis Mak. 2024 Jan 23;24(1):20. doi: 10.1186/s12911-024-02418-1.

Abstract

BACKGROUND

In recent years, the discovery of clinical pathways (CPs) from electronic medical records (EMRs) data has received increasing attention because it can directly support clinical doctors with explicit treatment knowledge, which is one of the key challenges in the development of intelligent healthcare services. However, the existing work has focused on topic probabilistic models, which usually produce treatment patterns with similar treatment activities, and such discovered treatment patterns do not take into account the temporal process of patient treatment which does not meet the needs of practical medical applications.

METHODS

Based on the assumption that CPs can be derived from the data of EMRs which usually record the treatment process of patients, this paper proposes a new CPs mining method from EMRs, an extended form of the traditional topic model - the temporal topic model (TTM). The method can capture the treatment topics and the corresponding treatment timestamps for each treatment day.

RESULTS

Experimental research conducted on a real-world dataset of patients' hospitalization processes, and the achieved results demonstrate the applicability and usefulness of the proposed methodology for CPs mining. Compared to existing benchmarks, our model shows significant improvement and robustness.

CONCLUSION

Our TTM provides a more competitive way to mine potential CPs considering the temporal features of the EMR data, providing a very prospective tool to support clinical diagnostic decisions.

摘要

背景

近年来,从电子病历 (EMR) 数据中发现临床路径 (CP) 引起了越来越多的关注,因为它可以直接为临床医生提供明确的治疗知识,这是智能医疗服务发展的关键挑战之一。然而,现有工作主要集中在主题概率模型上,这些模型通常会产生具有相似治疗活动的治疗模式,而发现的这些治疗模式没有考虑到患者治疗的时间过程,不符合实际医疗应用的需求。

方法

基于 CP 可以从记录患者治疗过程的 EMR 数据中推导出来的假设,本文提出了一种从 EMR 中挖掘 CP 的新方法,即传统主题模型 - 时间主题模型 (TTM) 的扩展形式。该方法可以捕获每个治疗日的治疗主题和相应的治疗时间戳。

结果

在患者住院过程的真实数据集上进行了实验研究,结果表明所提出的方法对于 CP 挖掘具有适用性和有用性。与现有基准相比,我们的模型显示出显著的改进和稳健性。

结论

我们的 TTM 提供了一种更具竞争力的方法来挖掘潜在的 CP,同时考虑到 EMR 数据的时间特征,为支持临床诊断决策提供了一个非常有前景的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a91/10804581/e4f306d504ec/12911_2024_2418_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验