Song Wenshuai, Yan Mengwei, Li Xinze, Han Longfei
School of Computer and Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China.
Entropy (Basel). 2024 Sep 5;26(9):762. doi: 10.3390/e26090762.
Federated learning enables multiple devices to collaboratively train a high-performance model on the central server while keeping their data on the devices themselves. However, due to the significant variability in data distribution across devices, the aggregated global model's optimization direction may differ from that of the local models, making the clients lose their personality. To address this challenge, we propose a Bidirectional Decoupled Distillation For Heterogeneous Federated Learning (BDD-HFL) approach, which incorporates an additional private model within each local client. This design enables mutual knowledge exchange between the private and local models in a bidirectional manner. Specifically, previous one-way federated distillation methods mainly focused on learning features from the target class, which limits their ability to distill features from non-target classes and hinders the convergence of local models. To solve this limitation, we decompose the network output into target and non-target class logits and distill them separately using a joint optimization of cross-entropy and decoupled relative-entropy loss. We evaluate the effectiveness of BDD-HFL through extensive experiments on three benchmarks under IID, Non-IID, and unbalanced data distribution scenarios. Our results show that BDD-HFL outperforms state-of-the-art federated distillation methods across five baselines, achieving at most 3% improvement in average classification accuracy on the CIFAR-10, CIFAR-100, and MNIST datasets. The experiments demonstrate the superiority and generalization capability of BDD-HFL in addressing personalization challenges in federated learning.
联邦学习使多个设备能够在中央服务器上协同训练一个高性能模型,同时将数据保存在设备本地。然而,由于设备间数据分布存在显著差异,聚合后的全局模型的优化方向可能与本地模型不同,导致客户端失去其个性化特征。为应对这一挑战,我们提出了一种用于异构联邦学习的双向解耦蒸馏方法(BDD-HFL),该方法在每个本地客户端中引入了一个额外的私有模型。这种设计使私有模型和本地模型之间能够以双向方式进行相互知识交换。具体而言,以往的单向联邦蒸馏方法主要侧重于从目标类中学习特征,这限制了它们从非目标类中蒸馏特征的能力,并阻碍了本地模型的收敛。为解决这一局限性,我们将网络输出分解为目标类和非目标类的对数its,并通过交叉熵和解耦相对熵损失的联合优化分别对它们进行蒸馏。我们通过在独立同分布(IID)、非独立同分布(Non-IID)和不平衡数据分布场景下的三个基准上进行广泛实验,评估了BDD-HFL的有效性。我们的结果表明,BDD-HFL在五个基线指标上均优于当前最先进的联邦蒸馏方法,在CIFAR-10、CIFAR-100和MNIST数据集上的平均分类准确率最多提高了3%。实验证明了BDD-HFL在应对联邦学习中的个性化挑战方面的优越性和泛化能力。