Leyva-Acosta Zoe, Acuña Yeomans Eduardo, Hernandez-Quiroz Francisco
Ciencia e Ingenieria de la Computacion, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico.
Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico.
Entropy (Basel). 2024 Sep 20;26(9):802. doi: 10.3390/e26090802.
We study practical approximations of Kolmogorov prefix complexity () using IMP2, a high-level programming language. Our focus is on investigating the optimality of the interpreter for this language as the reference machine for the Coding Theorem Method (CTM). This method is designed to address applications of algorithmic complexity that differ from the popular traditional lossless compression approach based on the principles of algorithmic probability. The chosen model of computation is proven to be suitable for this task, and a comparison to other models and methods is conducted. Our findings show that CTM approximations using our model do not always correlate with the results from lower-level models of computation. This suggests that some models may require a larger program space to converge to Levin's universal distribution. Furthermore, we compare the CTM with an upper bound on Kolmogorov complexity and find a strong correlation, supporting the CTM's validity as an approximation method with finer-grade resolution of .
我们使用一种高级编程语言IMP2来研究柯尔莫哥洛夫前缀复杂度()的实际近似值。我们的重点是研究该语言的解释器作为编码定理方法(CTM)的参考机器的最优性。这种方法旨在解决与基于算法概率原理的流行传统无损压缩方法不同的算法复杂度应用。所选的计算模型被证明适用于此任务,并与其他模型和方法进行了比较。我们的研究结果表明,使用我们的模型的CTM近似值并不总是与较低级计算模型的结果相关。这表明某些模型可能需要更大的程序空间才能收敛到莱文的通用分布。此外,我们将CTM与柯尔莫哥洛夫复杂度的上限进行了比较,发现有很强的相关性,支持CTM作为具有更精细分辨率的近似方法的有效性。