Zenil Hector, Kiani Narsis A, Tegnér Jesper
Algorithmic Dynamics Lab, Centre for Molecular Medicine, Karolinska Institute, Stockholm 171 77, Sweden.
Unit of Computational Medicine, Department of Medicine, Karolinska Institute, Stockholm 171 77, Sweden.
Entropy (Basel). 2018 Jul 18;20(7):534. doi: 10.3390/e20070534.
We introduce a definition of algorithmic symmetry in the context of geometric and spatial complexity able to capture mathematical aspects of different objects using as a case study polyominoes and polyhedral graphs. We review, study and apply a method for approximating the algorithmic complexity (also known as Kolmogorov-Chaitin complexity) of graphs and networks based on the concept of Algorithmic Probability (AP). AP is a concept (and method) capable of recursively enumerate all properties of computable (causal) nature beyond statistical regularities. We explore the connections of algorithmic complexity-both theoretical and numerical-with geometric properties mainly symmetry and topology from an (algorithmic) information-theoretic perspective. We show that approximations to algorithmic complexity by lossless compression and an Algorithmic Probability-based method can characterize spatial, geometric, symmetric and topological properties of mathematical objects and graphs.
我们在几何和空间复杂性的背景下引入了算法对称性的定义,该定义能够以多联骨牌和多面体图为案例研究,捕捉不同对象的数学方面。我们回顾、研究并应用一种基于算法概率(AP)概念来近似图和网络的算法复杂性(也称为柯尔莫哥洛夫 - 柴廷复杂性)的方法。AP是一个能够递归枚举超出统计规律的可计算(因果)性质的所有属性的概念(和方法)。我们从(算法)信息论的角度探索算法复杂性(包括理论和数值方面)与主要是对称性和拓扑的几何性质之间的联系。我们表明,通过无损压缩和基于算法概率的方法对算法复杂性的近似可以表征数学对象和图的空间、几何、对称和拓扑性质。