Chaouk Hamdi, Obeid Emil, Halwani Jalal, Arayro Jack, Mezher Rabih, Mouhtady Omar, Gazo-Hanna Eddie, Amine Semaan, Younes Khaled
College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait.
Water and Environment Sciences Laboratory, Lebanese University, Tripoli P.O. Box 6573/14, Lebanon.
Gels. 2024 Aug 27;10(9):554. doi: 10.3390/gels10090554.
This study explores the application of machine learning techniques, specifically principal component analysis (PCA), to analyze the influence of silica content on the physical and chemical properties of aerogels. Silica aerogels are renowned for their exceptional properties, including high porosity, large surface area, and low thermal conductivity, but their mechanical brittleness poses significant challenges. The study initially utilized cross-correlation analysis to examine the relationships between key properties such as the Brunauer-Emmett-Teller (BET) surface area, pore volume, density, and thermal conductivity. However, weak correlations prompted the application of PCA to uncover deeper insights into the data. The PCA results demonstrated that silica content has a significant impact on aerogel properties, with the first principal component (PC1) showing a strong positive correlation (R = 94%) with silica content. This suggests that higher silica levels correspond to lower thermal conductivity, porosity, and BET surface area, while increasing the density and elastic modulus. Additionally, the analysis identified the critical role of thermal conductivity in the second principal component (PC2), particularly in samples with moderate to high silica content. Overall, this study highlights the effectiveness of machine learning techniques like PCA in optimizing and understanding the complex inter-relationships among the physico-chemical properties of silica aerogels.
本研究探索了机器学习技术,特别是主成分分析(PCA)在分析二氧化硅含量对气凝胶物理和化学性质影响方面的应用。二氧化硅气凝胶以其优异的性能而闻名,包括高孔隙率、大表面积和低导热率,但其机械脆性带来了重大挑战。该研究最初利用互相关分析来研究诸如布鲁诺尔-埃米特-特勒(BET)表面积、孔体积、密度和导热率等关键性质之间的关系。然而,微弱的相关性促使应用PCA来更深入地洞察数据。PCA结果表明,二氧化硅含量对气凝胶性质有显著影响,第一主成分(PC1)与二氧化硅含量呈现出强正相关(R = 94%)。这表明较高的二氧化硅含量对应较低的导热率、孔隙率和BET表面积,同时增加密度和弹性模量。此外,分析确定了导热率在第二主成分(PC2)中的关键作用,特别是在二氧化硅含量中等至高的样品中。总体而言,本研究突出了PCA等机器学习技术在优化和理解二氧化硅气凝胶物理化学性质之间复杂相互关系方面的有效性。