Suppr超能文献

弗里克水凝胶剂量计中的扩散校正:一种采用二维和三维物理信息神经网络模型的深度学习方法。

Diffusion Correction in Fricke Hydrogel Dosimeters: A Deep Learning Approach with 2D and 3D Physics-Informed Neural Network Models.

作者信息

Romeo Mattia, Cottone Grazia, D'Oca Maria Cristina, Bartolotta Antonio, Gallo Salvatore, Miraglia Roberto, Gerasia Roberta, Milluzzo Giuliana, Romano Francesco, Gagliardo Cesare, Di Martino Fabio, d'Errico Francesco, Marrale Maurizio

机构信息

Department of Physics and Chemistry "Emilio Segrè", University of Palermo, Viale delle Scienze, Edificio 18, I-90128 Palermo, Italy.

Istituto Nazionale di Fisica Nucleare (INFN), Catania Division, Via Santa Sofia, 64, I-95123 Catania, Italy.

出版信息

Gels. 2024 Aug 30;10(9):565. doi: 10.3390/gels10090565.

Abstract

In this work an innovative approach was developed to address a significant challenge in the field of radiation dosimetry: the accurate measurement of spatial dose distributions using Fricke gel dosimeters. Hydrogels are widely used in radiation dosimetry due to their ability to simulate the tissue-equivalent properties of human tissue, making them ideal for measuring and mapping radiation dose distributions. Among the various gel dosimeters, Fricke gels exploit the radiation-induced oxidation of ferrous ions to ferric ions and are particularly notable due to their sensitivity. The concentration of ferric ions can be measured using various techniques, including magnetic resonance imaging (MRI) or spectrophotometry. While Fricke gels offer several advantages, a significant hurdle to their widespread application is the diffusion of ferric ions within the gel matrix. This phenomenon leads to a blurring of the dose distribution over time, compromising the accuracy of dose measurements. To mitigate the issue of ferric ion diffusion, researchers have explored various strategies such as the incorporation of additives or modification of the gel composition to either reduce the mobility of ferric ions or stabilize the gel matrix. The computational method proposed leverages the power of artificial intelligence, particularly deep learning, to mitigate the effects of ferric ion diffusion that can compromise measurement precision. By employing Physics Informed Neural Networks (PINNs), the method introduces a novel way to apply physical laws directly within the learning process, optimizing the network to adhere to the principles governing ion diffusion. This is particularly advantageous for solving the partial differential equations that describe the diffusion process in 2D and 3D. By inputting the spatial distribution of ferric ions at a given time, along with boundary conditions and the diffusion coefficient, the model can backtrack to accurately reconstruct the original ion distribution. This capability is crucial for enhancing the fidelity of 3D spatial dose measurements, ensuring that the data reflect the true dose distribution without the artifacts introduced by ion migration. Here, multidimensional models able to handle 2D and 3D data were developed and tested against dose distributions numerically evolved in time from 20 to 100 h. The results in terms of various metrics show a significant agreement in both 2D and 3D dose distributions. In particular, the mean square error of the prediction spans the range 1×10-6-1×10-4, while the gamma analysis results in a 90-100% passing rate with 3%/2 mm, depending on the elapsed time, the type of distribution modeled and the dimensionality. This method could expand the applicability of Fricke gel dosimeters to a wider range of measurement tasks, from simple planar dose assessments to intricate volumetric analyses. The proposed technique holds great promise for overcoming the limitations imposed by ion diffusion in Fricke gel dosimeters.

摘要

在这项工作中,开发了一种创新方法来应对辐射剂量测定领域的一项重大挑战:使用弗里克凝胶剂量计精确测量空间剂量分布。水凝胶因其能够模拟人体组织的组织等效特性而被广泛应用于辐射剂量测定中,使其成为测量和绘制辐射剂量分布的理想选择。在各种凝胶剂量计中,弗里克凝胶利用辐射诱导的亚铁离子氧化为铁离子,并且因其灵敏度而特别显著。铁离子的浓度可以使用包括磁共振成像(MRI)或分光光度法在内的各种技术进行测量。虽然弗里克凝胶具有若干优点,但其广泛应用的一个重大障碍是铁离子在凝胶基质内的扩散。这种现象导致剂量分布随时间模糊,损害了剂量测量的准确性。为了减轻铁离子扩散问题,研究人员探索了各种策略,例如加入添加剂或改变凝胶组成,以降低铁离子的迁移率或稳定凝胶基质。所提出的计算方法利用人工智能的力量,特别是深度学习,来减轻可能损害测量精度的铁离子扩散的影响。通过采用物理信息神经网络(PINN),该方法引入了一种在学习过程中直接应用物理定律的新方法,优化网络以遵循控制离子扩散的原理。这对于求解描述二维和三维扩散过程的偏微分方程特别有利。通过输入给定时间的铁离子空间分布以及边界条件和扩散系数,该模型可以回溯以准确重建原始离子分布。这种能力对于提高三维空间剂量测量的保真度至关重要,确保数据反映真实的剂量分布而没有离子迁移引入的伪影。在这里,开发了能够处理二维和三维数据的多维模型,并针对从20到100小时随时间数值演变的剂量分布进行了测试。根据各种指标得出的结果表明,二维和三维剂量分布都有显著的一致性。特别是,预测的均方误差范围为1×10-6 - 1×10-4,而伽马分析的通过率为90 - 100%(3%/2毫米),这取决于经过的时间、建模的分布类型和维度。这种方法可以将弗里克凝胶剂量计的适用性扩展到更广泛的测量任务,从简单的平面剂量评估到复杂的体积分析。所提出的技术在克服弗里克凝胶剂量计中离子扩散所带来的限制方面具有很大的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76ff/11431587/4ea7bf85920f/gels-10-00565-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验