Suppr超能文献

基于多层相变存储器的可重构多级存储与神经形态计算

Reconfigurable Multilevel Storage and Neuromorphic Computing Based on Multilayer Phase-Change Memory.

作者信息

Wang Lu, Ma Ge, Yan Senhao, Cheng Xiaomin, Miao Xiangshui

机构信息

School of Integrated Circuits, Hubei Key Laboratory for Advanced Memories, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.

出版信息

ACS Appl Mater Interfaces. 2024 Oct 9;16(40):54829-54836. doi: 10.1021/acsami.4c11087. Epub 2024 Sep 27.

Abstract

In the era of big data, the amount of global data is increasing exponentially, and the storage and processing of massive data put forward higher requirements for memory. To deal with this challenge, high-density memory and neuromorphic computing have been widely investigated. Here, a gradient-doped multilayer phase-change memory with two-level states, four-level states, and linear conductance evolution using different pulse operations is proposed. The mechanism of multilevel states is revealed through high-resolution transmission electron microscopy (HRTEM) and finite-element analysis (FEA), which show that the sequential phase change among different sublayers is realized due to the different physical properties of the sublayers with different doping concentrations. Taking advantage of the devices' linear conductance evolution characteristic, a handwritten digit (28 × 28 pixel) recognition task is implemented with a high learning accuracy of 93.46% by building a simulated artificial neural network made up of this gradient-doped multilayer phase-change memory. It is proved that this gradient-doped multilayer phase-change memory is capable of both binary multilevel digital storage and brain-inspired analog in-memory computing in the same device, enabling reconfigurable applications in the future.

摘要

在大数据时代,全球数据量呈指数级增长,海量数据的存储和处理对存储器提出了更高的要求。为应对这一挑战,高密度存储器和神经形态计算受到了广泛研究。在此,提出了一种具有两级状态、四级状态以及利用不同脉冲操作实现线性电导演化的梯度掺杂多层相变存储器。通过高分辨率透射电子显微镜(HRTEM)和有限元分析(FEA)揭示了多级状态的机制,结果表明,由于不同掺杂浓度的子层具有不同的物理性质,从而实现了不同子层之间的顺序相变。利用该器件的线性电导演化特性,通过构建由这种梯度掺杂多层相变存储器组成的模拟人工神经网络,实现了手写数字(28×28像素)识别任务,学习准确率高达93.46%。证明了这种梯度掺杂多层相变存储器在同一器件中既能实现二进制多级数字存储,又能实现受大脑启发的模拟内存计算,有望在未来实现可重构应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验