Suppr超能文献

基于驻极体的有机突触晶体管用于神经形态计算。

Electret-Based Organic Synaptic Transistor for Neuromorphic Computing.

机构信息

Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China.

Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350100, China.

出版信息

ACS Appl Mater Interfaces. 2020 Apr 1;12(13):15446-15455. doi: 10.1021/acsami.9b22925. Epub 2020 Mar 18.

Abstract

Neuromorphic computing inspired by the neural systems in human brain will overcome the issue of independent information processing and storage. An artificial synaptic device as a basic unit of a neuromorphic computing system can perform signal processing with low power consumption, and exploring different types of synaptic transistors is essential to provide suitable artificial synaptic devices for artificial intelligence. Hence, for the first time, an electret-based synaptic transistor (EST) is presented, which successfully shows synaptic behaviors including excitatory/inhibitory postsynaptic current, paired-pulse facilitation/depression, long-term memory, and high-pass filtering. Moreover, a neuromorphic computing simulation based on our EST is performed using the handwritten artificial neural network, which exhibits an excellent recognition accuracy (85.88%) after 120 learning epochs, higher than most reported organic synaptic transistors and close to the ideal accuracy (92.11%). Such a novel synaptic device enriches the diversity of synaptic transistors, laying the foundation for the diversified development of the next generation of neuromorphic computing systems.

摘要

受人类大脑神经系统启发的神经形态计算将克服独立信息处理和存储的问题。人工突触器件作为神经形态计算系统的基本单元,能够以低功耗进行信号处理,探索不同类型的突触晶体管对于为人工智能提供合适的人工突触器件至关重要。因此,首次提出了基于驻极体的突触晶体管 (EST),它成功地展示了包括兴奋性/抑制性突触后电流、成对脉冲易化/抑制、长时记忆和高通滤波在内的突触行为。此外,使用手写人工神经网络对我们的 EST 进行了神经形态计算模拟,在 120 个学习周期后表现出出色的识别精度 (85.88%),高于大多数报道的有机突触晶体管,接近理想精度 (92.11%)。这种新型突触器件丰富了突触晶体管的多样性,为下一代神经形态计算系统的多元化发展奠定了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验