Suppr超能文献

将眼动追踪与分组融合网络集成用于乳腺X光图像的语义分割

Integrating Eye Tracking With Grouped Fusion Networks for Semantic Segmentation on Mammogram Images.

作者信息

Xie Jiaming, Zhang Qing, Cui Zhiming, Ma Chong, Zhou Yan, Wang Wenping, Shen Dinggang

出版信息

IEEE Trans Med Imaging. 2025 Feb;44(2):868-879. doi: 10.1109/TMI.2024.3468404. Epub 2025 Feb 4.

Abstract

Medical image segmentation has seen great progress in recent years, largely due to the development of deep neural networks. However, unlike in computer vision, high-quality clinical data is relatively scarce, and the annotation process is often a burden for clinicians. As a result, the scarcity of medical data limits the performance of existing medical image segmentation models. In this paper, we propose a novel framework that integrates eye tracking information from experienced radiologists during the screening process to improve the performance of deep neural networks with limited data. Our approach, a grouped hierarchical network, guides the network to learn from its faults by using gaze information as weak supervision. We demonstrate the effectiveness of our framework on mammogram images, particularly for handling segmentation classes with large scale differences. We evaluate the impact of gaze information on medical image segmentation tasks and show that our method achieves better segmentation performance compared to state-of-the-art models. A robustness study is conducted to investigate the influence of distraction or inaccuracies in gaze collection. We also develop a convenient system for collecting gaze data without interrupting the normal clinical workflow. Our work offers novel insights into the potential benefits of integrating gaze information into medical image segmentation tasks.

摘要

近年来,医学图像分割取得了巨大进展,这在很大程度上归功于深度神经网络的发展。然而,与计算机视觉不同的是,高质量的临床数据相对稀缺,而且标注过程对临床医生来说往往是一项负担。因此,医学数据的稀缺限制了现有医学图像分割模型的性能。在本文中,我们提出了一种新颖的框架,该框架在筛查过程中整合经验丰富的放射科医生的眼动追踪信息,以提高有限数据情况下深度神经网络的性能。我们的方法是一种分组层次网络,通过将注视信息用作弱监督来引导网络从其错误中学习。我们在乳腺X光图像上证明了我们框架的有效性,特别是在处理具有大规模差异的分割类别方面。我们评估了注视信息对医学图像分割任务的影响,并表明我们的方法与现有最先进的模型相比实现了更好的分割性能。进行了一项稳健性研究,以调查注视采集过程中的干扰或不准确因素的影响。我们还开发了一个方便的系统,用于在不中断正常临床工作流程的情况下收集注视数据。我们的工作为将注视信息整合到医学图像分割任务中的潜在益处提供了新的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验