College of Human Medicine, Michigan State University, Grand Rapids, Michigan, United States of America.
Upside, Washington, District of Columbia, United States of America.
PLoS One. 2024 Sep 27;19(9):e0308791. doi: 10.1371/journal.pone.0308791. eCollection 2024.
Opioid use disorder (OUD) is a growing public health crisis, with opioids involved in an overwhelming majority of drug overdose deaths in the United States in recent years. While medications for opioid use disorder (MOUD) effectively reduce overdose mortality, only a minority of patients are able to access MOUD; additionally, those with unstable housing receive MOUD at even lower rates.
Because MOUD access is a multifactorial issue, we leverage machine learning techniques to assess and rank the variables most important in predicting whether any individual receives MOUD. We also seek to explain why persons experiencing homelessness have lower MOUD access and identify potential targets for action.
We utilize a gradient boosted decision tree algorithm (specifically, XGBoost) to train our model on SAMHSA's Treatment Episode Data Set-Admissions, using anonymized demographic and clinical information for over half a million opioid admissions to treatment facilities across the United States. We use Shapley values to quantify and interpret the predictive power and influencing direction of individual features (i.e., variables).
Our model is effective in predicting access to MOUD with an accuracy of 85.97% and area under the ROC curve of 0.9411. Notably, roughly half of the model's predictive power emerges from facility type (23.34%) and geographic location (18.71%); other influential factors include referral source (6.74%), history of prior treatment (4.41%), and frequency of opioid use (3.44%). We also find that unhoused patients go to facilities that overall have lower MOUD treatment rates; furthermore, relative to housed (i.e., independent living) patients at these facilities, unhoused patients receive MOUD at even lower rates. However, we hypothesize that if unhoused patients instead went to the facilities that housed patients enter at an equal percent (but still received MOUD at the lower unhoused rates), 89.50% of the disparity in MOUD access would be eliminated.
This study demonstrates the utility of a model that predicts MOUD access and both ranks the influencing variables and compares their individual positive or negative contribution to access. Furthermore, we examine the lack of MOUD treatment among persons with unstable housing and consider approaches for improving access.
阿片类药物使用障碍(OUD)是一个日益严重的公共卫生危机,近年来,在美国,阿片类药物在绝大多数药物过量死亡中都有涉及。虽然阿片类药物使用障碍的药物治疗(MOUD)能有效降低药物过量死亡率,但只有少数患者能够获得 MOUD;此外,那些住房不稳定的人获得 MOUD 的比例更低。
由于 MOUD 的获取是一个多因素问题,我们利用机器学习技术来评估和排名预测个体是否获得 MOUD 的最重要变量。我们还试图解释为什么无家可归者获得 MOUD 的机会较低,并确定可能采取行动的目标。
我们利用梯度提升决策树算法(具体来说,XGBoost),根据美国各地治疗设施中超过 50 万例阿片类药物治疗入院的匿名人口统计学和临床信息,在 SAMHSA 的治疗期数据集中进行训练。我们使用 Shapley 值来量化和解释单个特征(即变量)的预测能力和影响方向。
我们的模型在预测 MOUD 的获取方面非常有效,准确率为 85.97%,ROC 曲线下面积为 0.9411。值得注意的是,模型的预测能力约有一半来自于治疗机构的类型(23.34%)和地理位置(18.71%);其他有影响力的因素包括转介来源(6.74%)、既往治疗史(4.41%)和阿片类药物使用频率(3.44%)。我们还发现,无家可归者去的治疗机构总体上 MOUD 治疗率较低;此外,与这些机构中的有住房(即独立生活)的患者相比,无家可归者获得 MOUD 的比例更低。然而,我们假设,如果无家可归者去那些有住房的患者进入的机构的比例相同(但仍然以无家可归者的较低比例接受 MOUD),那么 MOUD 获取方面的差距将减少 89.50%。
这项研究展示了一种预测 MOUD 获取的模型的实用性,该模型不仅对影响因素进行排名,还比较了它们对获取的积极或消极贡献。此外,我们研究了不稳定住房人群中缺乏 MOUD 治疗的问题,并考虑了改善获取途径的方法。