Su Yuwei, Zhao Zhiwei, Wang Erkang, Peng Zhangquan
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China.
University of Science and Technology of China, Hefei 230026, China.
J Phys Chem Lett. 2024 Oct 10;15(40):10111-10117. doi: 10.1021/acs.jpclett.4c02455. Epub 2024 Sep 27.
Highly concentrated electrolytes (HCEs) have energized the development of high-energy-density lithium metal batteries by facilitating the formation of robust inorganic-derived solid electrolyte interfaces on the lithium anode. However, the oxygen reduction reaction (ORR) occurring on the cathode side remains ambiguous in HCE-based lithium-oxygen (Li-O) batteries. Herein, we investigate the ORR mechanism in a highly concentrated LiTFSI-CHCN electrolyte using ultra-microelectrode voltammetry coupled with in situ spectroscopies. It is found that, compared to the dilute electrolyte, the HCE prolongs the lifespan of superoxide intermediates and decelerates their migration rate to the bulk solution, resulting in a change in growth mode for the discharge product of LiO from traditional two-dimensional film growth to surface three-dimensional expansion growth. This alteration reduces the cathode passivation and thus delivers the enhanced discharge capacity. Additionally, the HCE also increases the reaction energy barrier between superoxide and solvent molecules, thereby minimizing parasitic reactions and improving the cycle performance of Li-O batteries. Our study reveals the intricate interplay between electrolytes and oxygen intermediates and provides important insights into electrolyte chemistries for better Li-O batteries.
高浓度电解质(HCEs)通过促进锂负极上坚固的无机衍生固体电解质界面的形成,推动了高能量密度锂金属电池的发展。然而,在基于HCE的锂氧(Li-O)电池中,阴极侧发生的氧还原反应(ORR)仍不明确。在此,我们使用超微电极伏安法结合原位光谱技术,研究了在高浓度LiTFSI-CHCN电解质中的ORR机制。研究发现,与稀电解质相比,HCE延长了超氧化物中间体的寿命,并减缓了它们向本体溶液的迁移速率,导致LiO放电产物的生长模式从传统的二维薄膜生长转变为表面三维膨胀生长。这种改变减少了阴极钝化,从而提高了放电容量。此外,HCE还增加了超氧化物与溶剂分子之间的反应能垒,从而最大限度地减少寄生反应,提高了Li-O电池的循环性能。我们的研究揭示了电解质与氧中间体之间复杂的相互作用,并为开发性能更优的Li-O电池的电解质化学提供了重要见解。