Seifnashri Sahand, Shao Shu-Heng
School of Natural Sciences, <a href="https://ror.org/00f809463">Institute for Advanced Study</a>, Princeton, New Jersey, USA.
C. N. Yang Institute for Theoretical Physics, <a href="https://ror.org/05qghxh33">Stony Brook University</a>, Stony Brook, New York, USA.
Phys Rev Lett. 2024 Sep 13;133(11):116601. doi: 10.1103/PhysRevLett.133.116601.
We show that the standard 1+1D Z_{2}×Z_{2} cluster model has a noninvertible global symmetry, described by the fusion category Rep(D_{8}). Therefore, the cluster state is not only a Z_{2}×Z_{2} symmetry protected topological (SPT) phase, but also a noninvertible SPT phase. We further find two new commuting Pauli Hamiltonians for the other two Rep(D_{8}) SPT phases on a tensor product Hilbert space of qubits, matching the classification in field theory and mathematics. We identify the edge modes and the local projective algebras at the interfaces between these noninvertible SPT phases. Finally, we show that there does not exist a symmetric entangler that maps between these distinct SPT states.
我们证明标准的1 + 1维(Z_{2}×Z_{2})簇模型具有由融合范畴(Rep(D_{8}))描述的不可逆全局对称性。因此,簇态不仅是(Z_{2}×Z_{2})对称性保护拓扑(SPT)相,也是不可逆SPT相。我们进一步在量子比特的张量积希尔伯特空间上为其他两个(Rep(D_{8})) SPT相找到了两个新的对易泡利哈密顿量,与场论和数学中的分类相匹配。我们确定了这些不可逆SPT相之间界面处的边缘模式和局域射影代数。最后,我们表明不存在在这些不同SPT态之间映射的对称纠缠器。