Suppr超能文献

利用地理空间分割方法优化大规模 CO 管道网络。

Optimizing large-scale CO pipeline networks using a geospatial splitting approach.

机构信息

Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.

Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.

出版信息

J Environ Manage. 2024 Nov;370:122522. doi: 10.1016/j.jenvman.2024.122522. Epub 2024 Sep 26.

Abstract

CO transport infrastructure is the backbone of carbon capture and storage (CCS) technology for the mitigation of carbon emissions and project deployment viability. In conventional large-scale CO pipeline network designs, the storage sites are generally assumed as the centroids of the major geologic basins, however, this approach might provide suboptimal solutions since the large extension of some storage formations significantly increases the length of the CO transportation networks. To address this situation and obtain optimal pipeline routes, we present a novel geospatial splitting framework that partitions large basins into multiple sub-sinks. In our approach, we used a large number of reservoir models varying petrophysical properties and CO injection rates to compute pressure plumes through numerical simulations, leading to the calculation of the number of subregions for each basin as a function of the extension of pressure interference areas and boundaries. Finally, we applied K-means clustering and Voronoi polygon algorithms to partition large basins into subregions and obtain their sink coordinates. To demonstrate the capability of the developed workflow, we investigated two CO pipeline network modeling case studies using our splitting approach: one regional case study focusing on the Intermountain West (I-West) region and one nationwide case study covering the lower 48 states in the U.S. In both case studies, we compared the optimal pipeline routes using the original and new storage locations and examined the major differences. The use of the developed geospatial approach resulted in both cases in a shortening of the total pipeline network length by 13% and 10%, compared to the pipeline modeling with the original basins, leading to cost reductions of 25% and 17%, respectively, demonstrating that the location of point sinks has a critical impact on the length and expenses of pipelines to efficiently transport CO to distant storage sites. Therefore, the workflow presented here contributes to the proper and realistic modeling of case studies that support decision-making in CCS deployment.

摘要

CO 输送基础设施是碳捕获和封存 (CCS) 技术的骨干,对于减少碳排放和项目部署的可行性至关重要。在传统的大型 CO 管道网络设计中,储存地点通常被假设为主要地质盆地的质心,但这种方法可能不是最优的,因为一些储存地层的大延伸显著增加了 CO 输送网络的长度。为了解决这个问题并获得最佳的管道线路,我们提出了一种新的地理空间分割框架,将大型盆地划分为多个子汇。在我们的方法中,我们使用了大量具有不同岩石物理性质和 CO 注入率的储层模型来通过数值模拟计算压力羽流,从而计算出每个盆地的子区域数量作为压力干扰区域和边界延伸的函数。最后,我们应用 K-均值聚类和 Voronoi 多边形算法将大型盆地划分为子区域,并获得它们的汇坐标。为了展示开发的工作流程的能力,我们使用我们的分割方法研究了两个 CO 管道网络建模案例研究:一个区域性案例研究侧重于山间西部 (I-West) 地区,另一个全国性案例研究覆盖美国的 48 个州。在这两个案例研究中,我们比较了使用原始和新储存位置的最佳管道线路,并检查了主要差异。与使用原始盆地的管道建模相比,使用开发的地理空间方法在这两种情况下都导致总管道网络长度缩短了 13%和 10%,分别导致成本降低了 25%和 17%,这表明点汇的位置对将 CO 高效输送到遥远的储存地点的管道的长度和费用有重大影响。因此,这里提出的工作流程有助于对支持 CCS 部署决策的案例研究进行适当和现实的建模。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验