Suppr超能文献

基于机器学习的凹凸棒土/聚酰亚胺纳米纤维复合气凝胶比色传感器阵列用于实时监测巴尔沙鱼片的新鲜度。

Machine learning-enabled attapulgite/polyimide nanofiber composite aerogels-based colorimetric sensor array for real-time monitoring of balsa fish freshness.

机构信息

Hebei Key Laboratory of Public Health Safety, Hebei Key Laboratory of Analytical Science and Technology, College of Public Health, Hebei University, Baoding 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.

Hebei Key Laboratory of Public Health Safety, Hebei Key Laboratory of Analytical Science and Technology, College of Public Health, Hebei University, Baoding 071002, China.

出版信息

Food Chem. 2025 Jan 15;463(Pt 3):141382. doi: 10.1016/j.foodchem.2024.141382. Epub 2024 Sep 20.

Abstract

This paper presents the development and application of attapulgite/polyimide nanofiber composite aerogels (ATP/PI NFAs) integrated with a range of acid-base indicators, fabricated using electrospinning and freeze-drying technologies. A detailed characterization of the ATP/PI NFAs revealed a 3D multi-level pore structure that enhanced the mass transfer of target gas molecules and their interaction with probe molecules. Utilizing machine learning approaches, we designed an ATP/PI NFAs-based colorimetric sensor array capable of real-time evaluation of balsa fish freshness. Color features sensitive to changes in freshness were selected using principal component analysis and random forest. Partial least squares regression and random forest regression models were established, achieving the prediction of total volatile basic nitrogen content in balsa fish. The system was validated using a national standard method to demonstrate its accuracy and practicality. The combination of advanced ATP/PI NFAs-based colorimetric sensor array with robust machine learning models paves the way for food safety monitoring.

摘要

本文提出了一种利用静电纺丝和冷冻干燥技术制备的具有一系列酸碱指示剂的凹凸棒石/聚酰亚胺纳米纤维复合气凝胶(ATP/PI NFAs)的开发和应用。通过详细的表征,发现 ATP/PI NFAs 具有 3D 多层次孔结构,增强了目标气体分子的传质及其与探针分子的相互作用。我们利用机器学习方法,设计了一种基于 ATP/PI NFAs 的比色传感器阵列,能够实时评估巴沙鱼的新鲜度。利用主成分分析和随机森林选择了对新鲜度变化敏感的颜色特征。建立了偏最小二乘回归和随机森林回归模型,实现了对巴沙鱼中总挥发性碱性氮含量的预测。该系统通过国家标准方法进行了验证,证明了其准确性和实用性。先进的基于 ATP/PI NFAs 的比色传感器阵列与强大的机器学习模型相结合,为食品安全监测铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验