文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

鉴定结直肠癌进展过程中的可靶向代谢依赖性。

Identifying targetable metabolic dependencies across colorectal cancer progression.

机构信息

School of Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK.

School of Cellular & Molecular Medicine, University of Bristol, UK.

出版信息

Mol Metab. 2024 Dec;90:102037. doi: 10.1016/j.molmet.2024.102037. Epub 2024 Sep 26.


DOI:10.1016/j.molmet.2024.102037
PMID:39332495
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11490841/
Abstract

Colorectal cancer (CRC) is a multi-stage process initiated through the formation of a benign adenoma, progressing to an invasive carcinoma and finally metastatic spread. Tumour cells must adapt their metabolism to support the energetic and biosynthetic demands associated with disease progression. As such, targeting cancer cell metabolism is a promising therapeutic avenue in CRC. However, to identify tractable nodes of metabolic vulnerability specific to CRC stage, we must understand how metabolism changes during CRC development. Here, we use a unique model system - comprising human early adenoma to late adenocarcinoma. We show that adenoma cells transition to elevated glycolysis at the early stages of tumour progression but maintain oxidative metabolism. Progressed adenocarcinoma cells rely more on glutamine-derived carbon to fuel the TCA cycle, whereas glycolysis and TCA cycle activity remain tightly coupled in early adenoma cells. Adenocarcinoma cells are more flexible with respect to fuel source, enabling them to proliferate in nutrient-poor environments. Despite this plasticity, we identify asparagine (ASN) synthesis as a node of metabolic vulnerability in late-stage adenocarcinoma cells. We show that loss of asparagine synthetase (ASNS) blocks their proliferation, whereas early adenoma cells are largely resistant to ASN deprivation. Mechanistically, we show that late-stage adenocarcinoma cells are dependent on ASNS to support mTORC1 signalling and maximal glycolytic and oxidative capacity. Resistance to ASNS loss in early adenoma cells is likely due to a feedback loop, absent in late-stage cells, allowing them to sense and regulate ASN levels and supplement ASN by autophagy. Together, our study defines metabolic changes during CRC development and highlights ASN synthesis as a targetable metabolic vulnerability in later stage disease.

摘要

结直肠癌(CRC)是一个多阶段的过程,起始于良性腺瘤的形成,进展为侵袭性癌,最终发生转移扩散。肿瘤细胞必须调整其代谢以支持与疾病进展相关的能量和生物合成需求。因此,靶向癌细胞代谢是 CRC 的一种有前途的治疗途径。然而,要确定针对 CRC 特定阶段的可行代谢脆弱性节点,我们必须了解代谢在 CRC 发展过程中如何变化。在这里,我们使用了一种独特的模型系统——包括人早期腺瘤到晚期腺癌。我们表明,腺瘤细胞在肿瘤进展的早期阶段向升高的糖酵解转变,但仍保持氧化代谢。进展期腺癌细胞更多地依赖谷氨酰胺衍生的碳来为 TCA 循环供能,而糖酵解和 TCA 循环活性在早期腺瘤细胞中仍然紧密偶联。腺癌细胞在燃料来源方面更具灵活性,使它们能够在营养贫乏的环境中增殖。尽管具有这种可塑性,我们仍确定天冬酰胺(ASN)合成是晚期腺癌细胞代谢脆弱性的一个节点。我们表明,丧失天冬酰胺合成酶(ASNS)会阻止其增殖,而早期腺瘤细胞对 ASN 剥夺的抵抗性较大。从机制上讲,我们表明晚期腺癌细胞依赖 ASNS 来支持 mTORC1 信号和最大的糖酵解和氧化能力。早期腺瘤细胞对 ASNS 丧失的抵抗性可能是由于反馈回路缺失,使它们能够感知和调节 ASN 水平,并通过自噬补充 ASN。总之,我们的研究定义了 CRC 发展过程中的代谢变化,并强调了 ASN 合成作为晚期疾病的一个可靶向代谢脆弱性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d9a/11490841/f46494991074/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d9a/11490841/4e05c6c9ce13/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d9a/11490841/22df01b6b95a/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d9a/11490841/f85d541f696e/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d9a/11490841/f070e74770c8/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d9a/11490841/051946053766/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d9a/11490841/626ebcca9704/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d9a/11490841/f46494991074/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d9a/11490841/4e05c6c9ce13/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d9a/11490841/22df01b6b95a/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d9a/11490841/f85d541f696e/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d9a/11490841/f070e74770c8/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d9a/11490841/051946053766/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d9a/11490841/626ebcca9704/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d9a/11490841/f46494991074/gr7.jpg

相似文献

[1]
Identifying targetable metabolic dependencies across colorectal cancer progression.

Mol Metab. 2024-12

[2]
Asparagine Dependency Is a Targetable Metabolic Vulnerability in TP53-Altered Castration-Resistant Prostate Cancer.

Cancer Res. 2024-9-16

[3]
Transcriptome-Wide Analysis and Experimental Validation from FFPE Tissue Identifies Stage-Specific Gene Expression Profiles Differentiating Adenoma, Carcinoma In-Situ and Adenocarcinoma in Colorectal Cancer Progression.

Int J Mol Sci. 2025-4-28

[4]
Metabolic Alterations Caused by KRAS Mutations in Colorectal Cancer Contribute to Cell Adaptation to Glutamine Depletion by Upregulation of Asparagine Synthetase.

Neoplasia. 2016-11

[5]
The angiogenic switch for vascular endothelial growth factor (VEGF)-A, VEGF-B, VEGF-C, and VEGF-D in the adenoma-carcinoma sequence during colorectal cancer progression.

J Pathol. 2003-6

[6]
Asparagine synthetase and G-protein coupled estrogen receptor are critical responders to nutrient supply in KRAS mutant colorectal cancer.

Int J Cancer. 2025-1-1

[7]
SLC25A22 Promotes Proliferation and Survival of Colorectal Cancer Cells With KRAS Mutations and Xenograft Tumor Progression in Mice via Intracellular Synthesis of Aspartate.

Gastroenterology. 2016-7-21

[8]
Loss of mitochondrial aconitase promotes colorectal cancer progression via SCD1-mediated lipid remodeling.

Mol Metab. 2021-6

[9]
NEK8 promotes the progression of gastric cancer by reprogramming asparagine metabolism.

Mol Med. 2025-1-6

[10]
Metabolomic Profiling of Asparagine Deprivation in Asparagine Synthetase Deficiency Patient-Derived Cells.

Nutrients. 2023-4-18

引用本文的文献

[1]
Mitochondrial metabolic reprogramming in colorectal cancer: mechanisms of resistance and future clinical interventions.

Cell Death Discov. 2025-8-9

[2]
Targeting glutamine metabolism as a potential target for cancer treatment.

J Exp Clin Cancer Res. 2025-7-1

[3]
Epigenetic Silencing of miR-218-5p Modulates BIRC5 and DDX21 Expression to Promote Colorectal Cancer Progression.

Int J Mol Sci. 2025-4-27

[4]
Targeting Asparagine Metabolism in Solid Tumors.

Nutrients. 2025-1-3

本文引用的文献

[1]
Aspirin reprogrammes colorectal cancer cell metabolism and sensitises to glutaminase inhibition.

Cancer Metab. 2023-10-19

[2]
Differential integrated stress response and asparagine production drive symbiosis and therapy resistance of pancreatic adenocarcinoma cells.

Nat Cancer. 2022-11

[3]
A non-dividing cell population with high pyruvate dehydrogenase kinase activity regulates metabolic heterogeneity and tumorigenesis in the intestine.

Nat Commun. 2022-3-21

[4]
SLC25A1 promotes tumor growth and survival by reprogramming energy metabolism in colorectal cancer.

Cell Death Dis. 2021-11-27

[5]
Asparagine reinforces mTORC1 signaling to boost thermogenesis and glycolysis in adipose tissues.

EMBO J. 2021-12-15

[6]
Targeting GLS1 to cancer therapy through glutamine metabolism.

Clin Transl Oncol. 2021-11

[7]
Interleukin-33 regulates metabolic reprogramming of the retinal pigment epithelium in response to immune stressors.

JCI Insight. 2021-4-22

[8]
TNMplot.com: A Web Tool for the Comparison of Gene Expression in Normal, Tumor and Metastatic Tissues.

Int J Mol Sci. 2021-3-5

[9]
5-Aminosalicylic acid inhibits stem cell function in human adenoma-derived cells: implications for chemoprophylaxis in colorectal tumorigenesis.

Br J Cancer. 2021-6

[10]
Asparagine couples mitochondrial respiration to ATF4 activity and tumor growth.

Cell Metab. 2021-5-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索