School of Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK.
School of Cellular & Molecular Medicine, University of Bristol, UK.
Mol Metab. 2024 Dec;90:102037. doi: 10.1016/j.molmet.2024.102037. Epub 2024 Sep 26.
Colorectal cancer (CRC) is a multi-stage process initiated through the formation of a benign adenoma, progressing to an invasive carcinoma and finally metastatic spread. Tumour cells must adapt their metabolism to support the energetic and biosynthetic demands associated with disease progression. As such, targeting cancer cell metabolism is a promising therapeutic avenue in CRC. However, to identify tractable nodes of metabolic vulnerability specific to CRC stage, we must understand how metabolism changes during CRC development. Here, we use a unique model system - comprising human early adenoma to late adenocarcinoma. We show that adenoma cells transition to elevated glycolysis at the early stages of tumour progression but maintain oxidative metabolism. Progressed adenocarcinoma cells rely more on glutamine-derived carbon to fuel the TCA cycle, whereas glycolysis and TCA cycle activity remain tightly coupled in early adenoma cells. Adenocarcinoma cells are more flexible with respect to fuel source, enabling them to proliferate in nutrient-poor environments. Despite this plasticity, we identify asparagine (ASN) synthesis as a node of metabolic vulnerability in late-stage adenocarcinoma cells. We show that loss of asparagine synthetase (ASNS) blocks their proliferation, whereas early adenoma cells are largely resistant to ASN deprivation. Mechanistically, we show that late-stage adenocarcinoma cells are dependent on ASNS to support mTORC1 signalling and maximal glycolytic and oxidative capacity. Resistance to ASNS loss in early adenoma cells is likely due to a feedback loop, absent in late-stage cells, allowing them to sense and regulate ASN levels and supplement ASN by autophagy. Together, our study defines metabolic changes during CRC development and highlights ASN synthesis as a targetable metabolic vulnerability in later stage disease.
结直肠癌(CRC)是一个多阶段的过程,起始于良性腺瘤的形成,进展为侵袭性癌,最终发生转移扩散。肿瘤细胞必须调整其代谢以支持与疾病进展相关的能量和生物合成需求。因此,靶向癌细胞代谢是 CRC 的一种有前途的治疗途径。然而,要确定针对 CRC 特定阶段的可行代谢脆弱性节点,我们必须了解代谢在 CRC 发展过程中如何变化。在这里,我们使用了一种独特的模型系统——包括人早期腺瘤到晚期腺癌。我们表明,腺瘤细胞在肿瘤进展的早期阶段向升高的糖酵解转变,但仍保持氧化代谢。进展期腺癌细胞更多地依赖谷氨酰胺衍生的碳来为 TCA 循环供能,而糖酵解和 TCA 循环活性在早期腺瘤细胞中仍然紧密偶联。腺癌细胞在燃料来源方面更具灵活性,使它们能够在营养贫乏的环境中增殖。尽管具有这种可塑性,我们仍确定天冬酰胺(ASN)合成是晚期腺癌细胞代谢脆弱性的一个节点。我们表明,丧失天冬酰胺合成酶(ASNS)会阻止其增殖,而早期腺瘤细胞对 ASN 剥夺的抵抗性较大。从机制上讲,我们表明晚期腺癌细胞依赖 ASNS 来支持 mTORC1 信号和最大的糖酵解和氧化能力。早期腺瘤细胞对 ASNS 丧失的抵抗性可能是由于反馈回路缺失,使它们能够感知和调节 ASN 水平,并通过自噬补充 ASN。总之,我们的研究定义了 CRC 发展过程中的代谢变化,并强调了 ASN 合成作为晚期疾病的一个可靶向代谢脆弱性。
J Exp Clin Cancer Res. 2025-7-1
Nutrients. 2025-1-3
Cancer Metab. 2023-10-19
Cell Death Dis. 2021-11-27
Clin Transl Oncol. 2021-11
Cell Metab. 2021-5-4