Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Viikinkaari 5d, 00790 Helsinki, Finland; Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, Viikinkaari 1, 00790 Helsinki, Finland; Lammi Biological Station, Faculty of Biological and Environmental Sciences, University of Helsinki, Pääjärventie 320, 16900 Hämeenlinna, Finland.
Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Viikinkaari 5d, 00790 Helsinki, Finland.
Biochim Biophys Acta Mol Cell Biol Lipids. 2025 Jan;1870(1):159565. doi: 10.1016/j.bbalip.2024.159565. Epub 2024 Sep 26.
Seasonality can influence many physiological traits requiring optimal energetic capacity for life-history stage transitions. In Atlantic salmon, high-energy status is essential for the initiation of maturation. Earlier studies have linked a genomic region encoding vgll3 to maturation age, potentially mediated via body condition. Vgll3 has also been shown to act as an inhibitor of adipogenesis in mice. Here we investigate the influence of season and vgll3 genotypes associating with early (EE) and late (LL) maturation on lipid profiles in the muscle and liver of juvenile Atlantic salmon. We reared Atlantic salmon for two years from fertilization and sampled muscle and liver during the spring and autumn of the second year (at which time some males were sexually mature). We found no seasonal or genotype effect in the muscle lipid profiles of immature males or females. However, in the liver we detected a triacylglycerol enrichment and a genotype specific direction of change in membrane lipids, phosphatidylcholine and phosphatidylethanolamine, from spring to autumn. Specifically, from spring to autumn membrane lipid concentrations increased in vgll3EE individuals but decreased in vgll3LL individuals. This could be explained by 1) a seasonally more stable capacity of endoplasmic reticulum (ER) functions in vgll3EE individuals compared to vgll3LL individuals or 2) vgll3LL individuals storing larger lipid droplets from spring to autumn in the liver compared to vgll3EE individuals at the expense of ER capacity. This genotype specific seasonal direction of change in membrane lipid concentrations provides more indirect evidence of a potential mechanism linking vgll3 with lipid metabolism and storage.
季节性会影响许多生理特征,这些特征需要生命史阶段过渡的最佳能量能力。在大西洋鲑鱼中,高能量状态对于成熟的启动至关重要。早期的研究将编码 vgll3 的基因组区域与成熟年龄联系起来,这可能是通过身体状况介导的。Vgll3 还被证明可以作为小鼠脂肪生成的抑制剂。在这里,我们研究了与早期(EE)和晚期(LL)成熟相关的季节和 vgll3 基因型对幼大西洋鲑肌肉和肝脏脂质谱的影响。我们从受精开始饲养大西洋鲑两年,并在第二年的春季和秋季采集肌肉和肝脏样本(此时一些雄性已经性成熟)。我们发现不成熟的雄性或雌性肌肉脂质谱没有季节性或基因型影响。然而,在肝脏中,我们检测到三酰甘油富集以及膜脂质、磷脂酰胆碱和磷脂酰乙醇胺从春季到秋季的基因型特异性变化方向。具体来说,从春季到秋季,vgll3EE 个体的膜脂质浓度增加,但 vgll3LL 个体的膜脂质浓度下降。这可以通过以下两种解释来解释:1)与 vgll3LL 个体相比,vgll3EE 个体内质网(ER)功能的季节性稳定性更高;2)从春季到秋季,与 vgll3EE 个体相比,vgll3LL 个体在肝脏中储存更大的脂质滴,这以 ER 能力为代价。这种基因型特异性的季节性膜脂质浓度变化方向提供了更多间接证据,表明 vgll3 与脂质代谢和储存之间存在潜在的机制联系。