Suppr超能文献

联合生物材料支架和神经调节策略促进啮齿动物脊髓损伤后的组织修复和皮质脊髓连接。

Combined biomaterial scaffold and neuromodulation strategy to promote tissue repair and corticospinal connectivity after spinal cord injury in a rodent model.

机构信息

City University of New York School of Medicine, Center for Discovery and Innovation, New York, USA.

Neuroscience Paris Seine NPS, CNRS UMR8246, INSERM U1130, UM119, Institut de Biologie Paris Seine IBPS, Sorbonne Université Sciences, Campus UPMC, 75005 Paris, France; Medjeduse, 57 Rue Richelieu, 75002 Paris, France.

出版信息

Exp Neurol. 2024 Dec;382:114965. doi: 10.1016/j.expneurol.2024.114965. Epub 2024 Sep 25.

Abstract

Spinal cord injury (SCI) damages the trauma site, leading to progressive and secondary structural defects rostral and caudal to the injury. Interruption of ascending and descending pathways produce motor, sensory, and autonomic impairments, driving the need for effective therapies. In this study, we address lesion site repair and promoting descending projections using a combined biomaterial-neuromodulation strategy in a rat model of cervical contusion SCI. To promote tissue repair, we used Chitosan fragmented physical hydrogel suspension (C), a biomaterial formulation optimized to mitigate inflammation and support tissue remodeling. To promote descending projections, we targeted the corticospinal motor system with dual motor cortex-trans-spinal direct current neuromodulation to promote spared corticospinal tract (CST) axon sprouting rostral and caudal to SCI. C, injected into the lesion site acutely, was followed by 10 days of daily neuromodulation. Analysis was made at the chronic phase, 8-weeks post-SCI. Compared with SCI only, C alone or in combination with neuromodulation prevented cavity formation, by promoting tissue remodeling at the injury site, abrogated astrogliosis surrounding the newly formed tissue, and enabled limited CST axon growth into the remodeled injury site. C alone significantly reduced CST axon dieback and was accompanied by preserving more CST axon gray matter projections rostral to SCI. C + neuromodulation produced sprouting rostral and caudal to injury. Our findings show that our novel biomaterial-neuromodulation combinatorial strategy achieves significant injury site tissue remodeling and promoted CST projections rostral and caudal to SCI.

摘要

脊髓损伤 (SCI) 会损伤创伤部位,导致损伤部位的顺行和继发性结构缺陷。上行和下行通路的中断会导致运动、感觉和自主功能障碍,这就需要有效的治疗方法。在这项研究中,我们使用一种生物材料-神经调节联合策略,在大鼠颈挫伤 SCI 模型中解决损伤部位的修复和促进下行投射的问题。为了促进组织修复,我们使用了壳聚糖碎片物理水凝胶悬浮液 (C),这是一种生物材料配方,经过优化可以减轻炎症并支持组织重塑。为了促进下行投射,我们使用双大脑皮层-脊髓直接电流神经调节靶向皮质脊髓运动系统,以促进 SCI 部位的皮质脊髓束 (CST) 轴突发芽。将 C 注入损伤部位急性,随后进行 10 天的每日神经调节。在 SCI 后 8 周的慢性阶段进行分析。与 SCI 组相比,C 单独使用或与神经调节联合使用可以防止空洞形成,通过促进损伤部位的组织重塑,消除围绕新形成组织的星形胶质细胞增生,并使 CST 轴突有限地生长进入重塑的损伤部位。C 单独使用可显著减少 CST 轴突退变,并伴有更多 CST 轴突灰质投射在 SCI 部位的保留。C+神经调节在损伤部位的前后均产生了发芽。我们的研究结果表明,我们的新型生物材料-神经调节联合策略可实现显著的损伤部位组织重塑和促进 SCI 部位前后的 CST 投射。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验