Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.
Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.
J Chem Inf Model. 2024 Oct 14;64(19):7650-7665. doi: 10.1021/acs.jcim.4c01167. Epub 2024 Sep 27.
We present our efforts in computational drug design against dipeptidyl peptidase 4 (DPP4), DPP8 and DPP9. We applied cosolvent molecular dynamics (MD) simulations to these three protein targets of interest. Our primary motivation is the growing interest in DPP8 and DPP9 as emerging drug targets. Due to the high similarity between DPP4, DPP8 and DPP9, DPP4 was also included in these analyses. The cosolvent molecular dynamics simulations reproduce key ligand binding features and known binding pockets, while also highlighting interesting fragment positions for future ligand optimization. The resulting fragment maps from the cosolvent molecular dynamics are freely available for use in future research (https://github.com/UAMC-Olivier/DPP489_cosolvent_MD/). Detailed instructions for easy visualization of the fragment maps are provided, ensuring that the results are usable by both computational and medicinal chemists. Additionally, we used the fragment maps to search for the binding pockets with significant potential using an algorithmic approach combining top fragment locations. To discover novel binding scaffolds, a limited pharmacophore screening was performed, where the pharmacophores were based on the analyses of the cosolvent simulations. Unfortunately, inhibitory potencies were in the higher micromolar range, but we optimized the resulting scaffolds using relative binding free energy calculations for future inhibitor design and synthesis.
我们介绍了在针对二肽基肽酶 4(DPP4)、DPP8 和 DPP9 的计算药物设计方面的努力。我们将共溶剂分子动力学(MD)模拟应用于这三个感兴趣的蛋白质靶标。我们的主要动机是对作为新兴药物靶标的 DPP8 和 DPP9 的兴趣日益浓厚。由于 DPP4、DPP8 和 DPP9 之间的高度相似性,DPP4 也包含在这些分析中。共溶剂分子动力学模拟再现了关键的配体结合特征和已知的结合口袋,同时还突出了未来配体优化的有趣片段位置。共溶剂分子动力学产生的片段图可免费用于未来的研究(https://github.com/UAMC-Olivier/DPP489_cosolvent_MD/)。提供了详细的说明,用于轻松可视化片段图,确保计算化学家和药物化学家都可以使用这些结果。此外,我们使用片段图结合基于片段位置的算法搜索具有显著潜力的结合口袋。为了发现新的结合支架,我们进行了有限的药效团筛选,药效团是基于共溶剂模拟的分析。不幸的是,抑制效力处于较高的微摩尔范围内,但我们使用相对结合自由能计算对所得支架进行了优化,以用于未来的抑制剂设计和合成。