Suppr超能文献

YOLOv5_mamba:基于双向密集反馈网络和自适应门特征融合的无人机目标检测

YOLOv5_mamba: unmanned aerial vehicle object detection based on bidirectional dense feedback network and adaptive gate feature fusion.

作者信息

Wu Shixiao, Lu Xingyuan, Guo Chengcheng

机构信息

School of Information Engineering, Wuhan Business University, Wuhan, 430056, China.

School of Computer Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.

出版信息

Sci Rep. 2024 Sep 27;14(1):22396. doi: 10.1038/s41598-024-73241-x.

Abstract

Addressing the problem that the object size in Unmanned Aerial Vehicles (UAVs) aerial images is too small and contains limited feature information, leading to existing detection algorithms having less than ideal performance in small object detection, we propose a UAV aerial object detection system named YOLv5_mamba based on bidirectional dense feedback network and adaptive gate feature fusion. This paper improves the You Only Look Once Version 5 (YOLOv5) algorithm by firstly introducing the Faster Implementation of CSP Bottleneck with 2 convolutions (C2f) module from YOLOv8 into the backbone network to enhance the feature extraction capability of the backbone network. Furthermore, the mamba module and C2f module are introduced to construct a bidirectional dense feedback network to enhance the transfer of contextual information in the neck part. Thirdly, an adaptive gate feature fusion network is proposed to improve the head part of YOLOv5 and enhance its final detection capability. Experimental results on the public UAV aerial dataset VisDrone2019 demonstrate that the proposed algorithm improves the detection accuracy by 9.3% compared to the original YOLOv5 baseline network, showing better detection performance for small objects. For the UCAS_AOD dataset, the proposed algorithm outperforms YOLOv5-s by 9%. In the case of the DIOR dataset, the proposed algorithm exceeds YOLOv5-s by 12%.

摘要

针对无人机航拍图像中目标尺寸过小且特征信息有限,导致现有检测算法在小目标检测中性能不理想的问题,我们提出了一种基于双向密集反馈网络和自适应门特征融合的无人机航拍目标检测系统YOLv5_mamba。本文对You Only Look Once Version 5(YOLOv5)算法进行了改进,首先将来自YOLOv8的具有2个卷积的CSP Bottleneck快速实现(C2f)模块引入主干网络,以增强主干网络的特征提取能力。此外,引入曼巴模块和C2f模块构建双向密集反馈网络,以增强颈部上下文信息的传递。第三,提出自适应门特征融合网络来改进YOLOv5的头部,增强其最终检测能力。在公开的无人机航拍数据集VisDrone2019上的实验结果表明,与原始YOLOv5基线网络相比,所提出的算法将检测准确率提高了9.3%,对小目标显示出更好的检测性能。对于UCAS_AOD数据集,所提出的算法比YOLOv5-s性能高出9%。在DIOR数据集的情况下,所提出的算法比YOLOv5-s高出12%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6210/11436646/6b0ca6e38493/41598_2024_73241_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验