Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.
ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, Australia.
Nat Commun. 2024 Sep 27;15(1):8372. doi: 10.1038/s41467-024-52623-9.
Ring-shaped DNA sliding clamps are essential for DNA replication and genome maintenance. Clamps need to be opened and chaperoned onto DNA by clamp loader complexes (CLCs). Detailed understanding of the mechanisms by which CLCs open and place clamps around DNA remains incomplete. Here, we present a series of six structures of the Escherichia coli CLC bound to an open or closed clamp prior to and after binding to a primer-template DNA, representing the most significant intermediates in the clamp loading process. We show that the ATP-bound CLC first binds to a clamp, then constricts to hold onto it. The CLC then expands to open the clamp with a gap large enough for double-stranded DNA to enter. Upon binding to DNA, the CLC constricts slightly, allowing clamp closing around DNA. These structures provide critical high-resolution snapshots of clamp loading by the E. coli CLC, revealing how the molecular machine works.
环形 DNA 滑动夹对于 DNA 复制和基因组维护至关重要。夹子需要由夹子加载器复合物 (CLC) 打开并引导到 DNA 上。对于 CLC 打开和将夹子放置在 DNA 周围的机制的详细理解仍然不完整。在这里,我们展示了一系列六个结构的大肠杆菌 CLC 与开放或封闭的夹子结合之前和之后绑定到引物 - 模板 DNA,代表在加载过程中最显著的中间体。我们表明,ATP 结合的 CLC 首先结合到夹子上,然后收缩以保持它。CLC 然后扩展以打开夹子,其间隙足够大,双链 DNA 可以进入。结合到 DNA 后,CLC 稍微收缩,允许夹关闭在 DNA 周围。这些结构提供了由大肠杆菌 CLC 加载夹子的关键高分辨率快照,揭示了分子机器的工作原理。