Suppr超能文献

人源夹钳加载器的结构揭示了底物结合 AAA+开关的自动抑制构象。

Structure of the human clamp loader reveals an autoinhibited conformation of a substrate-bound AAA+ switch.

机构信息

Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester MA 01605.

Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester MA 01605.

出版信息

Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23571-23580. doi: 10.1073/pnas.2007437117. Epub 2020 Sep 9.

Abstract

DNA replication requires the sliding clamp, a ring-shaped protein complex that encircles DNA, where it acts as an essential cofactor for DNA polymerases and other proteins. The sliding clamp needs to be opened and installed onto DNA by a clamp loader ATPase of the AAA+ family. The human clamp loader replication factor C (RFC) and sliding clamp proliferating cell nuclear antigen (PCNA) are both essential and play critical roles in several diseases. Despite decades of study, no structure of human RFC has been resolved. Here, we report the structure of human RFC bound to PCNA by cryogenic electron microscopy to an overall resolution of ∼3.4 Å. The active sites of RFC are fully bound to adenosine 5'-triphosphate (ATP) analogs, which is expected to induce opening of the sliding clamp. However, we observe the complex in a conformation before PCNA opening, with the clamp loader ATPase modules forming an overtwisted spiral that is incapable of binding DNA or hydrolyzing ATP. The autoinhibited conformation observed here has many similarities to a previous yeast RFC:PCNA crystal structure, suggesting that eukaryotic clamp loaders adopt a similar autoinhibited state early on in clamp loading. Our results point to a "limited change/induced fit" mechanism in which the clamp first opens, followed by DNA binding, inducing opening of the loader to release autoinhibition. The proposed change from an overtwisted to an active conformation reveals an additional regulatory mechanism for AAA+ ATPases. Finally, our structural analysis of disease mutations leads to a mechanistic explanation for the role of RFC in human health.

摘要

DNA 复制需要滑动夹,这是一种环绕 DNA 的环形蛋白复合物,作为 DNA 聚合酶和其他蛋白质的必需辅助因子发挥作用。滑动夹需要由 AAA+家族的夹载 ATP 酶打开并安装到 DNA 上。人类夹载器复制因子 C(RFC)和滑动夹增殖细胞核抗原(PCNA)都是必需的,在多种疾病中发挥着关键作用。尽管经过了几十年的研究,但仍未解析出人类 RFC 的结构。在这里,我们通过低温电子显微镜将与人 RFC 结合的 PCNA 结构报告至约 3.4Å 的整体分辨率。RFC 的活性位点完全与腺苷 5'-三磷酸(ATP)类似物结合,预计这将诱导滑动夹的打开。然而,我们观察到复合物处于 PCNA 打开之前的构象,夹载器 ATP 酶模块形成了无法结合 DNA 或水解 ATP 的过度扭曲螺旋。这里观察到的自动抑制构象与先前的酵母 RFC:PCNA 晶体结构有许多相似之处,表明真核夹载器在夹载过程中早期采用类似的自动抑制状态。我们的结果表明存在“有限变化/诱导契合”机制,其中夹首先打开,然后结合 DNA,诱导加载器打开以释放自动抑制。从过度扭曲到活跃构象的变化揭示了 AAA+ATP 酶的另一种调节机制。最后,我们对疾病突变的结构分析导致了 RFC 在人类健康中的作用的机制解释。

相似文献

1
Structure of the human clamp loader reveals an autoinhibited conformation of a substrate-bound AAA+ switch.
Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23571-23580. doi: 10.1073/pnas.2007437117. Epub 2020 Sep 9.
3
Cryo-EM reveals a nearly complete PCNA loading process and unique features of the human alternative clamp loader CTF18-RFC.
Proc Natl Acad Sci U S A. 2024 Apr 30;121(18):e2319727121. doi: 10.1073/pnas.2319727121. Epub 2024 Apr 26.
4
A central swivel point in the RFC clamp loader controls PCNA opening and loading on DNA.
J Mol Biol. 2012 Feb 17;416(2):163-75. doi: 10.1016/j.jmb.2011.12.017. Epub 2011 Dec 13.
5
Kinetic analysis of PCNA clamp binding and release in the clamp loading reaction catalyzed by Saccharomyces cerevisiae replication factor C.
Biochim Biophys Acta. 2015 Jan;1854(1):31-8. doi: 10.1016/j.bbapap.2014.09.019. Epub 2014 Oct 23.
6
Mechanism of PCNA loading by Ctf18-RFC for leading-strand DNA synthesis.
Science. 2024 Aug 2;385(6708):eadk5901. doi: 10.1126/science.adk5901.
7
Linchpin DNA-binding residues serve as go/no-go controls in the replication factor C-catalyzed clamp-loading mechanism.
J Biol Chem. 2017 Sep 22;292(38):15892-15906. doi: 10.1074/jbc.M117.798702. Epub 2017 Aug 14.
8
Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex.
Nature. 2004 Jun 17;429(6993):724-30. doi: 10.1038/nature02585.

引用本文的文献

1
Structure of the human CTF18-RFC clamp loader bound to PCNA.
bioRxiv. 2025 Jul 24:2024.05.08.593111. doi: 10.1101/2024.05.08.593111.
2
PCNA is a Nucleotide Exchange Factor for the Clamp Loader ATPase Complex.
bioRxiv. 2025 Jul 3:2025.07.02.662830. doi: 10.1101/2025.07.02.662830.
3
Effects of Chemical Cross-Linking on the Structure of Proteins and Protein Assemblies.
Anal Chem. 2025 Jul 22;97(28):15104-15112. doi: 10.1021/acs.analchem.5c01092. Epub 2025 Jul 8.
4
Disruption of the moonlighting function of CTF18 in a patient with T-lymphopenia.
Front Immunol. 2025 Feb 14;16:1539848. doi: 10.3389/fimmu.2025.1539848. eCollection 2025.
5
Structural characterisation of the complete cycle of sliding clamp loading in Escherichia coli.
Nat Commun. 2024 Sep 27;15(1):8372. doi: 10.1038/s41467-024-52623-9.
7
Mechanism of PCNA loading by Ctf18-RFC for leading-strand DNA synthesis.
Science. 2024 Aug 2;385(6708):eadk5901. doi: 10.1126/science.adk5901.
8
The human ATAD5 has evolved unique structural elements to function exclusively as a PCNA unloader.
Nat Struct Mol Biol. 2024 Nov;31(11):1680-1691. doi: 10.1038/s41594-024-01332-4. Epub 2024 Jun 13.
9
Cryo-EM reveals a nearly complete PCNA loading process and unique features of the human alternative clamp loader CTF18-RFC.
Proc Natl Acad Sci U S A. 2024 Apr 30;121(18):e2319727121. doi: 10.1073/pnas.2319727121. Epub 2024 Apr 26.
10
Differences between bacteria and eukaryotes in clamp loader mechanism, a conserved process underlying DNA replication.
J Biol Chem. 2024 Apr;300(4):107166. doi: 10.1016/j.jbc.2024.107166. Epub 2024 Mar 14.

本文引用的文献

1
Rhapsody: predicting the pathogenicity of human missense variants.
Bioinformatics. 2020 May 1;36(10):3084-3092. doi: 10.1093/bioinformatics/btaa127.
2
The functional landscape of the human phosphoproteome.
Nat Biotechnol. 2020 Mar;38(3):365-373. doi: 10.1038/s41587-019-0344-3. Epub 2019 Dec 9.
3
The molecular principles governing the activity and functional diversity of AAA+ proteins.
Nat Rev Mol Cell Biol. 2020 Jan;21(1):43-58. doi: 10.1038/s41580-019-0183-6. Epub 2019 Nov 21.
4
Mechanisms of replication origin licensing: a structural perspective.
Curr Opin Struct Biol. 2019 Dec;59:195-204. doi: 10.1016/j.sbi.2019.08.007. Epub 2019 Oct 17.
5
Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix.
Acta Crystallogr D Struct Biol. 2019 Oct 1;75(Pt 10):861-877. doi: 10.1107/S2059798319011471. Epub 2019 Oct 2.
6
Effective mismatch repair depends on timely control of PCNA retention on DNA by the Elg1 complex.
Nucleic Acids Res. 2019 Jul 26;47(13):6826-6841. doi: 10.1093/nar/gkz441.
7
Recognition of a Key Anchor Residue by a Conserved Hydrophobic Pocket Ensures Subunit Interface Integrity in DNA Clamps.
J Mol Biol. 2019 Jun 28;431(14):2493-2510. doi: 10.1016/j.jmb.2019.04.035. Epub 2019 Apr 30.
8
Protein denaturation at the air-water interface and how to prevent it.
Elife. 2019 Apr 1;8:e42747. doi: 10.7554/eLife.42747.
9
Biallelic expansion of an intronic repeat in RFC1 is a common cause of late-onset ataxia.
Nat Genet. 2019 Apr;51(4):649-658. doi: 10.1038/s41588-019-0372-4. Epub 2019 Mar 29.
10
PCNA accelerates the nucleotide incorporation rate by DNA polymerase δ.
Nucleic Acids Res. 2019 Feb 28;47(4):1977-1986. doi: 10.1093/nar/gky1321.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验