Chi Yuelong, Mao Lifeng, Wang Xuben, Pang Su, Yang Yi
College of Geophysics, Chengdu University of Technology, Chengdu, 610059, China.
The Engineering & Technical College of Chengdu University of Technology, Leshan, 614000, Sichuan, China.
Sci Rep. 2024 Sep 27;14(1):22156. doi: 10.1038/s41598-024-73375-y.
Traditional Finite Difference Time Domain (FDTD) approaches face challenges with increased computational demands and errors as terrain complexity and flight altitude rising. This study introduces the Crank-Nicolson-Cycle-Sweep-FDTD (CNCS-FDTD) method, enhancing airborne ground penetrating radar (GPR) simulations over undulating terrains. CNCS-FDTD, as an unconditionally stable implicit algorithm, overcomes these by allowing larger time steps without the constraints of the Courant-Friedrichs-Lewy (CFL) condition. Our research aims to assess how CNCS-FDTD can improve computational efficiency and accuracy in modeling airborne GPR responses across varied terrains. Initial simulations using a three-dimensional graben model indicate that CNCS-FDTD can maintain calculation stability with significantly larger time steps, reducing computational time by 42%. To further verify the reliability of the numerical simulation results, the paper also presents experimental tests of the undulating terrain model. By comparing the numerical and physical simulation results of models under different flight altitudes and terrain conditions, the accuracy of the simulation results is validated.
传统的时域有限差分(FDTD)方法随着地形复杂度和飞行高度的增加面临计算需求上升和误差增大的挑战。本研究引入了克兰克-尼科尔森循环扫描时域有限差分(CNCS-FDTD)方法,增强了在起伏地形上的机载探地雷达(GPR)模拟。CNCS-FDTD作为一种无条件稳定的隐式算法,通过允许更大的时间步长而不受库朗-弗里德里希斯-勒维(CFL)条件的限制克服了这些问题。我们的研究旨在评估CNCS-FDTD如何提高在不同地形上模拟机载GPR响应时的计算效率和准确性。使用三维地堑模型进行的初始模拟表明,CNCS-FDTD能够在显著更大的时间步长下保持计算稳定性,将计算时间减少42%。为了进一步验证数值模拟结果的可靠性,本文还给出了起伏地形模型的实验测试。通过比较不同飞行高度和地形条件下模型的数值模拟和物理模拟结果,验证了模拟结果的准确性。