Suppr超能文献

基于血液学指标的肺纤维化早期肺癌筛查新型预测模型。

Novel prediction model of early screening lung adenocarcinoma with pulmonary fibrosis based on haematological index.

机构信息

Department of Clinical Laboratory, StateKey Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China.

MRC Biostatistics Unit, University of Cambridge, Cambridge, CB2 0SR, UK.

出版信息

BMC Cancer. 2024 Sep 27;24(1):1178. doi: 10.1186/s12885-024-12902-6.

Abstract

BACKGROUND

Lung cancer (LC), a paramount global life-threatening condition causing significant mortality, is most commonly characterized by its subtype, lung adenocarcinoma (LUAD). Concomitant with LC, pulmonary fibrosis (PF) and interstitial lung disease (ILD) contribute to an intricate landscape of respiratory diseases. Idiopathic pulmonary fibrosis (IPF) in association with LC has been explored. However, other fibrotic interrelations remain underrepresented, especially for LUAD-PF and LUAD-ILD.

METHODS

We analysed data with statistical analysis from 7,137 healthy individuals, 7,762 LUAD patients, 7,955 ILD patients, and 2,124 complex PF patients collected over ten years. Furthermore, to identify blood indicators related to lung disease and its complications and compare the relationships between different indicators and lung diseases, we successfully applied the naive Bayes model for a biomarker-based prediction of diagnosis and development into complex PF.

RESULTS

Males predominantly marked their presence in all categories, save for complex PF where females took precedence. Biomarkers, specifically AGR, MLR, NLR, and PLR emerged as pivotal in discerning lung diseases. A machine-learning-driven predictive model underscored the efficacy of these markers in early detection and diagnosis, with NLR exhibiting unparalleled accuracy.

CONCLUSIONS

Our study elucidates the gender disparities in lung diseases and illuminates the profound potential of serum biomarkers, including AGR, MLR, NLR, and PLR in early lung cancer detection. With NLR as a standout, therefore, this study advances the exploration of indicator changes and predictions in patients with pulmonary disease and fibrosis, thereby improving early diagnosis, treatment, survival rate, and patient prognosis.

摘要

背景

肺癌(LC)是一种致命的全球性疾病,最常见的亚型是肺腺癌(LUAD)。同时,肺纤维化(PF)和间质性肺疾病(ILD)也会导致复杂的呼吸系统疾病。已经探讨了与 LC 相关的特发性肺纤维化(IPF)。然而,其他纤维化之间的关系仍然代表性不足,特别是 LUAD-PF 和 LUAD-ILD。

方法

我们分析了十年来收集的 7137 名健康个体、7762 名 LUAD 患者、7955 名 ILD 患者和 2124 名复杂 PF 患者的数据,并进行了统计分析。此外,为了确定与肺部疾病及其并发症相关的血液指标,并比较不同指标与肺部疾病的关系,我们成功地应用了朴素贝叶斯模型,基于生物标志物对复杂 PF 的诊断和发展进行了预测。

结果

除了复杂 PF 患者以女性为主外,男性在所有类别中都占多数。生物标志物,特别是 AGR、MLR、NLR 和 PLR,在区分肺部疾病方面具有重要意义。机器学习驱动的预测模型强调了这些标志物在早期检测和诊断中的有效性,其中 NLR 表现出无与伦比的准确性。

结论

我们的研究阐明了肺部疾病中的性别差异,并揭示了血清生物标志物(包括 AGR、MLR、NLR 和 PLR)在早期肺癌检测中的巨大潜力。因此,NLR 作为一个突出的指标,这项研究推进了对肺部疾病和纤维化患者的指标变化和预测的探索,从而提高了早期诊断、治疗、生存率和患者预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1202/11438419/bc23ad8750b8/12885_2024_12902_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验