Suppr超能文献

联邦系统用于自动化感染监测:一个视角。

Federated systems for automated infection surveillance: a perspective.

机构信息

Department of Epidemiology and Surveillance, Centre for Infectious Disease Epidemiology and Surveillance, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.

Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.

出版信息

Antimicrob Resist Infect Control. 2024 Sep 27;13(1):113. doi: 10.1186/s13756-024-01464-8.

Abstract

Automation of surveillance of infectious diseases-where algorithms are applied to routine care data to replace manual decisions-likely reduces workload and improves quality of surveillance. However, various barriers limit large-scale implementation of automated surveillance (AS). Current implementation strategies for AS in surveillance networks include central implementation (i.e. collecting all data centrally, and central algorithm application for case ascertainment) or local implementation (i.e. local algorithm application and sharing surveillance results with the network coordinating center). In this perspective, we explore whether current challenges can be solved by federated AS. In federated AS, scripts for analyses are developed centrally and applied locally. We focus on the potential of federated AS in the context of healthcare associated infections (AS-HAI) and of severe acute respiratory illness (AS-SARI). AS-HAI and AS-SARI have common and specific requirements, but both would benefit from decreased local surveillance burden, alignment of AS and increased central and local oversight, and improved access to data while preserving privacy. Federated AS combines some benefits of a centrally implemented system, such as standardization and alignment of an easily scalable methodology, with some of the benefits of a locally implemented system including (near) real-time access to data and flexibility in algorithms, meeting different information needs and improving sustainability, and allowance of a broader range of clinically relevant case-definitions. From a global perspective, it can promote the development of automated surveillance where it is not currently possible and foster international collaboration.The necessary transformation of source data likely will place a significant burden on healthcare facilities. However, this may be outweighed by the potential benefits: improved comparability of surveillance results, flexibility and reuse of data for multiple purposes. Governance and stakeholder agreement to address accuracy, accountability, transparency, digital literacy, and data protection, warrants clear attention to create acceptance of the methodology. In conclusion, federated automated surveillance seems a potential solution for current barriers of large-scale implementation of AS-HAI and AS-SARI. Prerequisites for successful implementation include validation of results and evaluation requirements of network participants to govern understanding and acceptance of the methodology.

摘要

传染病监测自动化-将算法应用于常规护理数据以替代人工决策-可能会减轻工作量并提高监测质量。然而,各种障碍限制了自动化监测(AS)的大规模实施。当前在监测网络中实施 AS 的策略包括集中实施(即集中收集所有数据,并对病例进行集中算法应用)或本地实施(即本地算法应用并与网络协调中心共享监测结果)。在这种情况下,我们探讨了联邦 AS 是否可以解决当前的挑战。在联邦 AS 中,分析脚本是集中开发并在本地应用的。我们重点研究了联邦 AS 在医疗保健相关感染(AS-HAI)和严重急性呼吸疾病(AS-SARI)方面的潜力。AS-HAI 和 AS-SARI 具有共同和特定的要求,但都将受益于减轻本地监测负担、对齐 AS 并增加中央和本地监督,以及改善数据访问同时保护隐私。联邦 AS 结合了集中实施系统的一些优势,例如易于扩展的标准化和对齐方法,以及本地实施系统的一些优势,包括(近)实时访问数据和算法的灵活性,满足不同的信息需求并提高可持续性,并允许更广泛的临床相关病例定义。从全球角度来看,它可以促进尚未实现自动化监测的地方的发展,并促进国际合作。源数据的必要转换可能会给医疗保健机构带来重大负担。然而,这可能会被潜在的好处所抵消:提高监测结果的可比性、灵活性以及数据的多用途重用。为了解决准确性、问责制、透明度、数字素养和数据保护问题,需要得到治理和利益相关者的同意,这需要引起人们对创造方法接受度的关注。总之,联邦自动化监测似乎是解决当前医疗保健相关感染和严重急性呼吸疾病大规模实施障碍的一种潜在解决方案。成功实施的前提包括验证结果和评估网络参与者的要求,以管理对方法的理解和接受。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a54f/11438042/79f068dc908f/13756_2024_1464_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验