文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用计算技术对原位杂交(ISH)染色图像进行综述。

Review of In Situ Hybridization (ISH) Stain Images Using Computational Techniques.

作者信息

Rehman Zaka Ur, Ahmad Fauzi Mohammad Faizal, Wan Ahmad Wan Siti Halimatul Munirah, Abas Fazly Salleh, Cheah Phaik Leng, Chiew Seow Fan, Looi Lai-Meng

机构信息

Faculty of Engineering, Multimedia University, Cyberjaya 63100, Malaysia.

Institute for Research, Development and Innovation (IRDI), IMU University, Bukit Jalil, Kuala Lumpur 57000, Malaysia.

出版信息

Diagnostics (Basel). 2024 Sep 21;14(18):2089. doi: 10.3390/diagnostics14182089.


DOI:10.3390/diagnostics14182089
PMID:39335767
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11430898/
Abstract

Recent advancements in medical imaging have greatly enhanced the application of computational techniques in digital pathology, particularly for the classification of breast cancer using in situ hybridization (ISH) imaging. HER2 amplification, a key prognostic marker in 20-25% of breast cancers, can be assessed through alterations in gene copy number or protein expression. However, challenges persist due to the heterogeneity of nuclear regions and complexities in cancer biomarker detection. This review examines semi-automated and fully automated computational methods for analyzing ISH images with a focus on gene amplification. Literature from 1997 to 2023 is analyzed, emphasizing silver-enhanced in situ hybridization (SISH) and its integration with image processing and machine learning techniques. Both conventional machine learning approaches and recent advances in deep learning are compared. The review reveals that automated ISH analysis in combination with bright-field microscopy provides a cost-effective and scalable solution for routine pathology. The integration of deep learning techniques shows promise in improving accuracy over conventional methods, although there are limitations related to data variability and computational demands. Automated ISH analysis can reduce manual labor and increase diagnostic accuracy. Future research should focus on refining these computational methods, particularly in handling the complex nature of HER2 status evaluation, and integrate best practices to further enhance clinical adoption of these techniques.

摘要

医学成像的最新进展极大地推动了计算技术在数字病理学中的应用,特别是在利用原位杂交(ISH)成像对乳腺癌进行分类方面。HER2扩增是20%-25%乳腺癌中的关键预后标志物,可通过基因拷贝数或蛋白质表达的改变来评估。然而,由于核区域的异质性和癌症生物标志物检测的复杂性,挑战依然存在。本综述探讨了用于分析ISH图像的半自动和全自动计算方法,重点是基因扩增。分析了1997年至2023年的文献,强调了银增强原位杂交(SISH)及其与图像处理和机器学习技术的整合。比较了传统机器学习方法和深度学习的最新进展。该综述表明,结合明场显微镜的自动化ISH分析为常规病理学提供了一种经济高效且可扩展的解决方案。深度学习技术的整合显示出比传统方法提高准确性的潜力,尽管存在与数据可变性和计算需求相关的局限性。自动化ISH分析可以减少人工劳动并提高诊断准确性。未来的研究应专注于改进这些计算方法,特别是在处理HER2状态评估的复杂性质方面,并整合最佳实践以进一步促进这些技术在临床上的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee6e/11430898/5c5ee81d3a14/diagnostics-14-02089-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee6e/11430898/ee22353f8526/diagnostics-14-02089-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee6e/11430898/82531a21fc2a/diagnostics-14-02089-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee6e/11430898/87bfcc5dab03/diagnostics-14-02089-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee6e/11430898/cab45897d6f3/diagnostics-14-02089-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee6e/11430898/5c5ee81d3a14/diagnostics-14-02089-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee6e/11430898/ee22353f8526/diagnostics-14-02089-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee6e/11430898/82531a21fc2a/diagnostics-14-02089-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee6e/11430898/87bfcc5dab03/diagnostics-14-02089-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee6e/11430898/cab45897d6f3/diagnostics-14-02089-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee6e/11430898/5c5ee81d3a14/diagnostics-14-02089-g005.jpg

相似文献

[1]
Review of In Situ Hybridization (ISH) Stain Images Using Computational Techniques.

Diagnostics (Basel). 2024-9-21

[2]
Comparison of automated silver enhanced in situ hybridisation (SISH) and fluorescence ISH (FISH) for the validation of HER2 gene status in breast carcinoma according to the guidelines of the American Society of Clinical Oncology and the College of American Pathologists.

Virchows Arch. 2007-7

[3]
Validation and workflow optimization of human epidermal growth factor receptor 2 testing using INFORM HER2 dual-color in situ hybridization.

Hum Pathol. 2013-9-25

[4]
Bright-field in situ hybridization for HER2 gene amplification in breast cancer using tissue microarrays: correlation between chromogenic (CISH) and automated silver-enhanced (SISH) methods with patient outcome.

Diagn Mol Pathol. 2009-6

[5]
Delineation of HER2 gene status in breast carcinoma by silver in situ hybridization is reproducible among laboratories and pathologists.

J Mol Diagn. 2008-11

[6]
Silver in situ hybridization (SISH) for determination of HER2 gene status in breast carcinoma: comparison with FISH and assessment of interobserver reproducibility.

Am J Surg Pathol. 2010-6

[7]
Improved concordance of challenging human epidermal growth factor receptor 2 dual in-situ hybridisation cases with the use of a digital image analysis algorithm in breast cancer.

Histopathology. 2023-10

[8]
Dual-color silver-enhanced in situ hybridization for assessing HER2 gene amplification in breast cancer.

Mod Pathol. 2011-2-11

[9]
Evaluation of the HER2 amplification status in oesophageal adenocarcinoma by conventional and automated FISH: a tissue microarray study.

J Clin Pathol. 2013-9-16

[10]
HER2 status in gastric cancer: a comparison of two novel in situ hybridization methods (IQ FISH and dual color SISH) and two immunohistochemistry methods (A0485 and HercepTest™).

Pathol Res Pract. 2013-6-27

本文引用的文献

[1]
Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer.

Arch Pathol Lab Med. 2023-9-1

[2]
Deep Model Based Transfer and Multi-Task Learning for Biological Image Analysis.

IEEE Trans Big Data. 2020-6

[3]
Evaluation of deep convolutional neural networks for in situ hybridization gene expression image representation.

PLoS One. 2022

[4]
Machine Learning Algorithms for Classification of First-Trimester Fetal Brain Ultrasound Images.

J Ultrasound Med. 2022-7

[5]
Automated 3D scoring of fluorescence in situ hybridization (FISH) using a confocal whole slide imaging scanner.

Appl Microsc. 2021-4-9

[6]
Impact of chromosome 17 centromere copy number increase on patient survival and human epidermal growth factor receptor 2 expression in gastric adenocarcinoma.

Oncol Lett. 2021-2

[7]
Breast HER2 Intratumoral Heterogeneity as a Biomarker for Improving HER2-Targeted Therapy.

Crit Rev Oncog. 2020

[8]
Supervised and Unsupervised End-to-End Deep Learning for Gene Ontology Classification of Neural In Situ Hybridization Images.

Entropy (Basel). 2019-2-26

[9]
An annotated fluorescence image dataset for training nuclear segmentation methods.

Sci Data. 2020-8-11

[10]
Preliminary study on discriminating HER2 2+ amplification status of breast cancers based on texture features semi-automatically derived from pre-, post-contrast, and subtraction images of DCE-MRI.

PLoS One. 2020-6-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索