Suppr超能文献

基于深度模型的生物图像分析迁移与多任务学习

Deep Model Based Transfer and Multi-Task Learning for Biological Image Analysis.

作者信息

Zhang Wenlu, Li Rongjian, Zeng Tao, Sun Qian, Kumar Sudhir, Ye Jieping, Ji Shuiwang

机构信息

Department of Computer Science, Old Dominion University, Norfolk, VA, 23529.

School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, 99163.

出版信息

IEEE Trans Big Data. 2020 Jun;6(2):322-333. doi: 10.1109/tbdata.2016.2573280. Epub 2016 May 30.

Abstract

A central theme in learning from image data is to develop appropriate representations for the specific task at hand. Thus, a practical challenge is to determine what features are appropriate for specific tasks. For example, in the study of gene expression patterns in , texture features were particularly effective for determining the developmental stages from in situ hybridization images. Such image representation is however not suitable for controlled vocabulary term annotation. Here, we developed feature extraction methods to generate hierarchical representations for ISH images. Our approach is based on the deep convolutional neural networks that can act on image pixels directly. To make the extracted features generic, the models were trained using a natural image set with millions of labeled examples. These models were transferred to the ISH image domain. To account for the differences between the source and target domains, we proposed a partial transfer learning scheme in which only part of the source model is transferred. We employed multi-task learning method to fine-tune the pre-trained models with labeled ISH images. Results showed that feature representations computed by deep models based on transfer and multi-task learning significantly outperformed other methods for annotating gene expression patterns at different stage ranges.

摘要

从图像数据中学习的一个核心主题是为手头的特定任务开发合适的表示形式。因此,一个实际的挑战是确定哪些特征适用于特定任务。例如,在研究[具体研究对象]中的基因表达模式时,纹理特征对于从原位杂交图像确定发育阶段特别有效。然而,这种图像表示不适用于受控词汇术语注释。在这里,我们开发了特征提取方法来生成原位杂交图像的分层表示。我们的方法基于可以直接作用于图像像素的深度卷积神经网络。为了使提取的特征具有通用性,使用包含数百万个标记示例的自然图像集对模型进行训练。然后将这些模型转移到原位杂交图像领域。为了解决源域和目标域之间的差异,我们提出了一种部分迁移学习方案,其中只转移源模型的一部分。我们采用多任务学习方法,用标记的原位杂交图像对预训练模型进行微调。结果表明,基于迁移和多任务学习的深度模型计算的特征表示在注释不同阶段范围内的基因表达模式方面明显优于其他方法。

相似文献

1
10
Domain- and task-specific transfer learning for medical segmentation tasks.面向医学分割任务的域和任务特定迁移学习。
Comput Methods Programs Biomed. 2022 Feb;214:106539. doi: 10.1016/j.cmpb.2021.106539. Epub 2021 Nov 23.

引用本文的文献

5
Ten quick tips for deep learning in biology.生物学深度学习的十条快速提示。
PLoS Comput Biol. 2022 Mar 24;18(3):e1009803. doi: 10.1371/journal.pcbi.1009803. eCollection 2022 Mar.
6
Deep autoencoder based domain adaptation for transfer learning.基于深度自动编码器的领域自适应用于迁移学习。
Multimed Tools Appl. 2022;81(16):22379-22405. doi: 10.1007/s11042-022-12226-2. Epub 2022 Mar 16.
8
Automatic image annotation for fluorescent cell nuclei segmentation.用于荧光细胞核分割的自动图像标注
PLoS One. 2021 Apr 16;16(4):e0250093. doi: 10.1371/journal.pone.0250093. eCollection 2021.

本文引用的文献

4
Representation learning: a review and new perspectives.表示学习:综述与新视角。
IEEE Trans Pattern Anal Mach Intell. 2013 Aug;35(8):1798-828. doi: 10.1109/TPAMI.2013.50.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验