Suppr超能文献

基于深度模型的生物图像分析迁移与多任务学习

Deep Model Based Transfer and Multi-Task Learning for Biological Image Analysis.

作者信息

Zhang Wenlu, Li Rongjian, Zeng Tao, Sun Qian, Kumar Sudhir, Ye Jieping, Ji Shuiwang

机构信息

Department of Computer Science, Old Dominion University, Norfolk, VA, 23529.

School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, 99163.

出版信息

IEEE Trans Big Data. 2020 Jun;6(2):322-333. doi: 10.1109/tbdata.2016.2573280. Epub 2016 May 30.

Abstract

A central theme in learning from image data is to develop appropriate representations for the specific task at hand. Thus, a practical challenge is to determine what features are appropriate for specific tasks. For example, in the study of gene expression patterns in , texture features were particularly effective for determining the developmental stages from in situ hybridization images. Such image representation is however not suitable for controlled vocabulary term annotation. Here, we developed feature extraction methods to generate hierarchical representations for ISH images. Our approach is based on the deep convolutional neural networks that can act on image pixels directly. To make the extracted features generic, the models were trained using a natural image set with millions of labeled examples. These models were transferred to the ISH image domain. To account for the differences between the source and target domains, we proposed a partial transfer learning scheme in which only part of the source model is transferred. We employed multi-task learning method to fine-tune the pre-trained models with labeled ISH images. Results showed that feature representations computed by deep models based on transfer and multi-task learning significantly outperformed other methods for annotating gene expression patterns at different stage ranges.

摘要

从图像数据中学习的一个核心主题是为手头的特定任务开发合适的表示形式。因此,一个实际的挑战是确定哪些特征适用于特定任务。例如,在研究[具体研究对象]中的基因表达模式时,纹理特征对于从原位杂交图像确定发育阶段特别有效。然而,这种图像表示不适用于受控词汇术语注释。在这里,我们开发了特征提取方法来生成原位杂交图像的分层表示。我们的方法基于可以直接作用于图像像素的深度卷积神经网络。为了使提取的特征具有通用性,使用包含数百万个标记示例的自然图像集对模型进行训练。然后将这些模型转移到原位杂交图像领域。为了解决源域和目标域之间的差异,我们提出了一种部分迁移学习方案,其中只转移源模型的一部分。我们采用多任务学习方法,用标记的原位杂交图像对预训练模型进行微调。结果表明,基于迁移和多任务学习的深度模型计算的特征表示在注释不同阶段范围内的基因表达模式方面明显优于其他方法。

相似文献

1
Deep Model Based Transfer and Multi-Task Learning for Biological Image Analysis.
IEEE Trans Big Data. 2020 Jun;6(2):322-333. doi: 10.1109/tbdata.2016.2573280. Epub 2016 May 30.
2
Deep convolutional neural networks for annotating gene expression patterns in the mouse brain.
BMC Bioinformatics. 2015 May 7;16:147. doi: 10.1186/s12859-015-0553-9.
3
A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images.
Comput Methods Programs Biomed. 2017 Mar;140:283-293. doi: 10.1016/j.cmpb.2016.12.019. Epub 2017 Jan 6.
4
FlyIT: Drosophila Embryogenesis Image Annotation based on Image Tiling and Convolutional Neural Networks.
IEEE/ACM Trans Comput Biol Bioinform. 2021 Jan-Feb;18(1):194-204. doi: 10.1109/TCBB.2019.2935723. Epub 2021 Feb 3.
5
Hierarchical Recurrent Neural Hashing for Image Retrieval With Hierarchical Convolutional Features.
IEEE Trans Image Process. 2018;27(1):106-120. doi: 10.1109/TIP.2017.2755766.
6
Deep Low-Shot Learning for Biological Image Classification and Visualization From Limited Training Samples.
IEEE Trans Neural Netw Learn Syst. 2023 May;34(5):2528-2538. doi: 10.1109/TNNLS.2021.3106831. Epub 2023 May 2.
7
Semi Supervised Learning with Deep Embedded Clustering for Image Classification and Segmentation.
IEEE Access. 2019;7:11093-11104. doi: 10.1109/ACCESS.2019.2891970. Epub 2019 Jan 9.
8
Transfer learning for data-efficient abdominal muscle segmentation with convolutional neural networks.
Med Phys. 2022 May;49(5):3107-3120. doi: 10.1002/mp.15533. Epub 2022 Feb 28.
10
Domain- and task-specific transfer learning for medical segmentation tasks.
Comput Methods Programs Biomed. 2022 Feb;214:106539. doi: 10.1016/j.cmpb.2021.106539. Epub 2021 Nov 23.

引用本文的文献

1
Review of In Situ Hybridization (ISH) Stain Images Using Computational Techniques.
Diagnostics (Basel). 2024 Sep 21;14(18):2089. doi: 10.3390/diagnostics14182089.
2
Deep Learning for Genomics: From Early Neural Nets to Modern Large Language Models.
Int J Mol Sci. 2023 Nov 1;24(21):15858. doi: 10.3390/ijms242115858.
3
Contributions of deep learning to automated numerical modelling of the interaction of electric fields and cartilage tissue based on 3D images.
Front Bioeng Biotechnol. 2023 Aug 29;11:1225495. doi: 10.3389/fbioe.2023.1225495. eCollection 2023.
4
TL-med: A Two-stage transfer learning recognition model for medical images of COVID-19.
Biocybern Biomed Eng. 2022 Jul-Sep;42(3):842-855. doi: 10.1016/j.bbe.2022.04.005. Epub 2022 Apr 29.
5
Ten quick tips for deep learning in biology.
PLoS Comput Biol. 2022 Mar 24;18(3):e1009803. doi: 10.1371/journal.pcbi.1009803. eCollection 2022 Mar.
6
Deep autoencoder based domain adaptation for transfer learning.
Multimed Tools Appl. 2022;81(16):22379-22405. doi: 10.1007/s11042-022-12226-2. Epub 2022 Mar 16.
7
Artificial Intelligence for Autonomous Molecular Design: A Perspective.
Molecules. 2021 Nov 9;26(22):6761. doi: 10.3390/molecules26226761.
8
Automatic image annotation for fluorescent cell nuclei segmentation.
PLoS One. 2021 Apr 16;16(4):e0250093. doi: 10.1371/journal.pone.0250093. eCollection 2021.
9
Modeling multi-species RNA modification through multi-task curriculum learning.
Nucleic Acids Res. 2021 Apr 19;49(7):3719-3734. doi: 10.1093/nar/gkab124.
10
A pre-training and self-training approach for biomedical named entity recognition.
PLoS One. 2021 Feb 9;16(2):e0246310. doi: 10.1371/journal.pone.0246310. eCollection 2021.

本文引用的文献

1
A mesh generation and machine learning framework for Drosophila gene expression pattern image analysis.
BMC Bioinformatics. 2013 Dec 28;14:372. doi: 10.1186/1471-2105-14-372.
2
Automated annotation of developmental stages of Drosophila embryos in images containing spatial patterns of expression.
Bioinformatics. 2014 Jan 15;30(2):266-73. doi: 10.1093/bioinformatics/btt648. Epub 2013 Dec 3.
3
Image-level and group-level models for Drosophila gene expression pattern annotation.
BMC Bioinformatics. 2013 Dec 3;14:350. doi: 10.1186/1471-2105-14-350.
4
Representation learning: a review and new perspectives.
IEEE Trans Pattern Anal Mach Intell. 2013 Aug;35(8):1798-828. doi: 10.1109/TPAMI.2013.50.
5
Learning sparse representations for fruit-fly gene expression pattern image annotation and retrieval.
BMC Bioinformatics. 2012 May 23;13:107. doi: 10.1186/1471-2105-13-107.
6
FlyExpress: visual mining of spatiotemporal patterns for genes and publications in Drosophila embryogenesis.
Bioinformatics. 2011 Dec 1;27(23):3319-20. doi: 10.1093/bioinformatics/btr567. Epub 2011 Oct 12.
7
Automatic annotation of spatial expression patterns via sparse Bayesian factor models.
PLoS Comput Biol. 2011 Jul;7(7):e1002098. doi: 10.1371/journal.pcbi.1002098. Epub 2011 Jul 21.
9
SPEX2: automated concise extraction of spatial gene expression patterns from Fly embryo ISH images.
Bioinformatics. 2010 Jun 15;26(12):i47-56. doi: 10.1093/bioinformatics/btq172.
10
Systematic image-driven analysis of the spatial Drosophila embryonic expression landscape.
Mol Syst Biol. 2010;6:345. doi: 10.1038/msb.2009.102. Epub 2010 Jan 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验