Citrin D S
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0250, USA.
Georgia Tech-CNRS IRL2958, Georgia Tech-Europe, 2 Rue Marconi, 57070 Metz, France.
Materials (Basel). 2024 Sep 12;17(18):4488. doi: 10.3390/ma17184488.
The Gauss chain is a one-dimensional quasiperiodic lattice with sites at zj=jnd, where j∈{0, 1, 2, …, N-1}, n∈{2, 3, 4, …}, and is the underlying lattice constant. We numerically study the formation of a hierarchy of minibands and gaps as increases using a Kronig-Penney model. Increasing empirically results in a more fragmented miniband and gap structure due to the rapid increase in the number of minibands and gaps as increases, in agreement with previous studies. We show that the Gauss chain zj=j2d and a specific generalized Gauss chain, zj=(j2±12j)d, are treatable by a real-space renormalization group approach. These appear to be the only Gauss chains treatable by this approach, suggesting a hidden symmetry for the quadratic cases.
高斯链是一种一维准周期晶格,其格点位于(z_j = jnd)处,其中(j\in{0, 1, 2, \ldots, N - 1}),(n\in{2, 3, 4, \ldots}),(d)是基础晶格常数。我们使用克勒尼希 - 彭尼模型,通过数值方法研究随着(n)增加时,微带和能隙层级结构的形成。根据经验,随着(n)的增加,微带和能隙的数量迅速增加,导致微带和能隙结构更加碎片化,这与之前的研究结果一致。我们表明,高斯链(z_j = j^2d)和特定的广义高斯链(z_j = (j^2\pm12j)d)可以用实空间重整化群方法处理。这些似乎是仅能用此方法处理的高斯链,这表明二次情形存在隐藏对称性。