Chakma Prajjayini, Luo Yunhua
Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
Materials (Basel). 2024 Sep 13;17(18):4490. doi: 10.3390/ma17184490.
Conventional analytical formulas for predicting the effective Young's modulus of porous materials often rely on simplifying assumptions and do not explicitly incorporate microstructural information. This study investigates the impact of regular versus irregular pore distributions on the stiffness of porous materials using microstructure-free finite element modeling (MF-FEM). After conducting a convergence study, MF-FEM predictions were validated against experimental data and used to assess the accuracy of commonly employed analytical models. The results demonstrate that materials with irregular microstructures exhibit a rapid decrease in Young's modulus, approaching zero at porosities slightly greater than 50%. In contrast, regular microstructures show a more gradual decline, maintaining significant stiffness until the porosity exceeds 90%. Additionally, the study reveals that some analytical formulas align better with irregular microstructures while others are more suited to regular ones, attributable to the underlying assumptions of these models. These findings underscore the necessity of considering pore distribution patterns in modeling to accurately predict the mechanical behavior of porous materials.
用于预测多孔材料有效杨氏模量的传统解析公式通常依赖于简化假设,并未明确纳入微观结构信息。本研究使用无微观结构有限元建模(MF-FEM)来研究规则与不规则孔隙分布对多孔材料刚度的影响。在进行收敛性研究后,MF-FEM预测结果与实验数据进行了验证,并用于评估常用解析模型的准确性。结果表明,具有不规则微观结构的材料杨氏模量迅速下降,在孔隙率略大于50%时接近零。相比之下,规则微观结构的下降更为平缓,在孔隙率超过90%之前保持显著的刚度。此外,研究表明,一些解析公式与不规则微观结构的拟合度更好,而另一些则更适合规则微观结构,这归因于这些模型的基本假设。这些发现强调了在建模时考虑孔隙分布模式以准确预测多孔材料力学行为的必要性。