Narojczyk Jakub W, Wojciechowski Krzysztof W, Smardzewski Jerzy, Tretiakov Konstantin V
Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland.
Uniwersytet Kaliski im. Prezydenta St. Wojciechowskiego, Nowy Świat 4, 62-800 Kalisz, Poland.
Materials (Basel). 2024 Sep 17;17(18):4564. doi: 10.3390/ma17184564.
Designing a particular change in a system structure to achieve the desired elastic properties of materials for a given task is challenging. Recent studies of purely geometrical atomic models have shown that structural modifications on a molecular level can lead to interesting and desirable elastic properties. Still, the result of such changes is usually difficult to predict. The present work concerns the impact of nanolayer inclusion ordering in hard sphere crystals on their elastic properties, with special attention devoted to their auxetic properties. Two sets of representative models, based on cubic crystals consisting of 6×6×6 unit cells of hard spheres and containing either neighboring or separated layers of spheres of another diameter, oriented orthogonally to the [001] direction, have been studied by Monte Carlo simulations in the isothermal-isobaric () ensemble. Their elastic constants have been evaluated using the Parinello-Rahman approach. The Monte Carlo simulations showed that introducing the layer inclusions into a pure face-centered cubic (FCC) structure leads to the system's symmetry changes from cubic symmetry to tetragonal in both cases. Essential changes in the elastic properties of the systems due to layer ordering were found both for neighboring and separated inclusions. It has been found that the choice of a set of layer inclusions allows one to tune the auxetic properties in two crystallographic directions ([110][11¯0] and [101][1¯01]). In particular, this study revealed that the change in layer ordering (from six separated layers to six neighboring ones) allows for, respectively: (i) enhancing auxeticity of the system in the [101][1¯01] direction with almost loss of auxetic properties in the [110][11¯0] direction in the case of six separated layers, while (ii) in the case of six neighboring layers, keeping the auxetic properties in both auxetic directions independently of the size of spheres constituting inclusions.
设计系统结构中的特定变化以实现给定任务所需的材料弹性特性具有挑战性。最近对纯几何原子模型的研究表明,分子水平上的结构修饰可导致有趣且理想的弹性特性。然而,这种变化的结果通常很难预测。本工作关注硬球晶体中纳米层夹杂物有序排列对其弹性特性的影响,特别关注其负泊松比特性。通过等温等压(NPT)系综下的蒙特卡罗模拟研究了两组代表性模型,这些模型基于由6×6×6个硬球晶胞组成的立方晶体,且包含与[001]方向正交的另一直径球体的相邻或分离层。使用Parinello-Rahman方法评估了它们的弹性常数。蒙特卡罗模拟表明,在两种情况下,将层夹杂物引入纯面心立方(FCC)结构都会导致系统对称性从立方对称变为四方对称。对于相邻和分离夹杂物,均发现由于层有序排列导致系统弹性特性发生了本质变化。已发现选择一组层夹杂物可在两个晶体学方向([110][11¯0]和[101][1¯01])上调节负泊松比特性。特别是,本研究表明,层有序排列的变化(从六个分离层变为六个相邻层)分别允许:(i)在六个分离层的情况下,增强系统在[101][1¯01]方向上的负泊松比特性,同时在[110][11¯0]方向上几乎失去负泊松比特性;而(ii)在六个相邻层的情况下,无论构成夹杂物的球体大小如何,在两个负泊松比方向上都保持负泊松比特性。